Norman Borlaug: Difference between revisions
m punct |
SandyGeorgia (talk | contribs) →Wheat research in Mexico: fix one example only of unnecessary article tagging resulting in unnecessary defeaturing, this article could have been saved with one hour's work |
||
Line 62: | Line 62: | ||
[[Image:Wheat field.jpg|thumb|[[Wheat]] is the most produced [[cereal]] crop]] |
[[Image:Wheat field.jpg|thumb|[[Wheat]] is the most produced [[cereal]] crop]] |
||
Borlaug said that his first couple of years in Mexico were difficult. He lacked trained scientists and equipment. Native farmers were hostile toward the wheat program because of serious crop losses from 1939 to 1941 due to [[stem rust]]. "It often appeared to me that I had made a dreadful mistake in accepting the position in Mexico," he wrote in the epilogue to his book, ''Norman Borlaug on World Hunger''.<ref name="greengiant" /> He spent the first 10 years breeding wheat cultivars resistant to disease, including [[rust (fungus)|rust]]. In that time, his group made 6,000 individual crossings of wheat. |
Borlaug said that his first couple of years in Mexico were difficult. He lacked trained scientists and equipment. Native farmers were hostile toward the wheat program because of serious crop losses from 1939 to 1941 due to [[stem rust]]. "It often appeared to me that I had made a dreadful mistake in accepting the position in Mexico," he wrote in the epilogue to his book, ''Norman Borlaug on World Hunger''.<ref name="greengiant" /> He spent the first 10 years breeding wheat cultivars resistant to disease, including [[rust (fungus)|rust]]. In that time, his group made 6,000 individual crossings of wheat.<ref name="uommexico"> University of Minnesota. 2005. [http://web.archive.org/web/20041226212713/http://www.coafes.umn.edu/Borlaug_s_Work_in_Mexico.html Borlaug's Work in Mexico]<br /></ref> |
||
===Double wheat season=== |
===Double wheat season=== |
||
Line 71: | Line 71: | ||
[[Image:Borlaug Mexico locations.png|thumb|300px|Locations of Borlaug's research stations, at Yaqui Valley and Chapingo]] |
[[Image:Borlaug Mexico locations.png|thumb|300px|Locations of Borlaug's research stations, at Yaqui Valley and Chapingo]] |
||
As an unexpected benefit of the double wheat season, the new breeds did not have problems with [[photoperiodism]]. Normally, wheat varieties cannot adapt to new environments, due to the changing periods of sunlight. Borlaug later recalled, "As it worked out, in the north, we were planting when the days were getting shorter, at low elevation and high temperature. Then we'd take the seed from the best plants south and plant it at high elevation, when days were getting longer and there was lots of rain. Soon we had varieties that fit the whole range of conditions. That wasn't supposed to happen by the books". |
As an unexpected benefit of the double wheat season, the new breeds did not have problems with [[photoperiodism]]. Normally, wheat varieties cannot adapt to new environments, due to the changing periods of sunlight. Borlaug later recalled, "As it worked out, in the north, we were planting when the days were getting shorter, at low elevation and high temperature. Then we'd take the seed from the best plants south and plant it at high elevation, when days were getting longer and there was lots of rain. Soon we had varieties that fit the whole range of conditions. That wasn't supposed to happen by the books".<ref name="uommexico" /> This meant that the project wouldn't need to start separate breeding programs for each geographic region of the planet. |
||
===Increasing disease resistance through multiline varieties=== |
===Increasing disease resistance through multiline varieties=== |
Revision as of 13:52, 13 September 2009
This article is currently being heavily edited because its subject has recently died. Information about their death and related events may change significantly and initial news reports may be unreliable. The most recent updates to this article may not reflect the most current information. |
Norman Borlaug | |
---|---|
Born | March 25, 1914 |
Died | September 12, 2009 (age 95) Dallas, Texas |
Nationality | USA |
Citizenship | United States |
Alma mater | University of Minnesota |
Known for | His role in the Green Revolution, helping develop semi-dwarf, high-yield, disease-resistant wheat varieties , and as a founder of the World Food Prize |
Awards | the Nobel Peace Prize, the Presidential Medal of Freedom, the Congressional Gold Medal, the National Medal of Science, the Padma Vibhushan, and the Rotary International Award |
Norman Ernest Borlaug (March 25, 1914–September 12, 2009)[1] was an American agronomist, humanitarian, and Nobel laureate, and has been called the father of the Green Revolution.[2] Borlaug was one of only five people to have won the Nobel Peace Prize, the Presidential Medal of Freedom and the Congressional Gold Medal.[3] He was also a recipient of the Padma Vibhushan, India's second-highest civilian honor. Borlaug's discoveries have been estimated to have saved over 245 million lives worldwide.[4]
Borlaug received his Ph.D. degree in plant pathology and genetics from the University of Minnesota in 1942. He took up an agricultural research position in Mexico, where he developed semi-dwarf high-yield, disease-resistant wheat varieties.
During the mid-20th century, Borlaug led the introduction of these high-yielding varieties combined with modern agricultural production techniques to Mexico, Pakistan, and India. As a result, Mexico became a net exporter of wheat by 1963. Between 1965 and 1970, wheat yields nearly doubled in Pakistan and India, greatly improving the food security in those nations. These collective increases in yield have been labeled the Green Revolution, and Borlaug is often credited with saving over a billion people from starvation.[5] He was awarded the Nobel Peace Prize in 1970 in recognition of his contributions to world peace through increasing food supply.
Later in his life, he helped apply these methods of increasing food production to Asia and Africa. Borlaug continually advocated the use of his methods and biotechnology to decrease world famine. His work has faced environmental and socioeconomic criticisms, including charges that his methods have created dependence on monoculture crops, unsustainable farming practices, heavy indebtedness among subsistence farmers, and high levels of cancer among those who work with agriculture chemicals. He emphatically rejected many of these as unfounded or untrue.[citation needed] In 1986, he established the World Food Prize to recognize individuals who have improved the quality, quantity or availability of food around the globe.
Early life, education, and family
Borlaug was the great-grandchild of Norwegian immigrants to the United States. Ole Olson Dybevig and Solveig Thomasdotter Rinde, from Leikanger, Norway, emigrated to Dane, Wisconsin, in 1854. Two of their children, Ole Olson Borlaug and Nels Olson Borlaug (Norman's grandfather), were integral in the establishment of the Immanuel Norwegian Evangelical Lutheran Congregation in the small Norwegian-American community of Saude, near Cresco, Iowa in 1889.[6][7]
The eldest of four children—his three younger sisters were Palma Lillian (Behrens; 1916–2004), Charlotte (Culbert; b. 1919) and Helen (1921–1921)—Borlaug was born to Henry Oliver (1889–1971) and Clara (Vaala) Borlaug (1888–1972) on his grandparents' farm in Saude in 1914. From age seven to nineteen, he worked on the 106 acre (43 hectare) family farm west of Protivin, Iowa, fishing, hunting, and raising maize, oats, timothy hay, cattle, pigs and chickens. He attended the one-teacher, one-room New Oregon #8 rural school in Howard County up through eighth grade. Today, the school building, built in 1865, is owned by the Norman Borlaug Heritage Foundation as part of "Project Borlaug Legacy".[8] At Cresco High School, Borlaug played on the football, baseball and wrestling teams, on the latter of which his coach, Dave Barthelma, continually encouraged him to "give 105%" [citation needed].
He attributes his decision to leave the farm and pursue further education to his grandfather, Nels Olson Borlaug (1859 to 1935), who strongly encouraged Borlaug's learning, once saying, "You're wiser to fill your head now if you want to fill your belly later on."[9] Through a Depression-era program known as the National Youth Administration, he was able to enroll at the University of Minnesota in 1933. Initially, Borlaug failed the entrance exam, but was accepted to the school's newly created two-year General College. After two quarters, he transferred to the College of Agriculture's forestry program. While at the University of Minnesota, he was a member of the varsity wrestling team, reaching the Big Ten semifinals, and helped introduce the sport to Minnesota high schools by putting on exhibition matches around the state. "Wrestling taught me some valuable lessons ... I always figured I could hold my own against the best in the world. It made me tough. Many times, I drew on that strength. It's an inappropriate crutch perhaps, but that's the way I'm made".[failed verification][10] Borlaug was inducted into the National Wrestling Hall of Fame in Stillwater, Oklahoma in 1992.
To finance his studies, Borlaug periodically had to put his education on hold and take a job. One of these jobs, in 1935, was as a leader in the Civilian Conservation Corps, working with the unemployed on US federal projects. Many of the people who worked for him were starving. He later recalled, "I saw how food changed them...All of this left scars on me".[11] From 1935 to 1938, before and after receiving his Bachelor of Science forestry degree in 1937, Borlaug worked for the United States Forestry Service at stations in Massachusetts and Idaho. He spent one summer in the middle fork of Idaho's Salmon River—the most isolated piece of wilderness in the lower 48 states at the time.[11]
In the last months of his undergraduate education, Borlaug attended a Sigma Xi lecture by Elvin Charles Stakman, a professor and soon-to-be head of the plant pathology group at the University of Minnesota. The event was pivotal for Borlaug's future life. Stakman, in his speech titled "These Shifty Little Enemies that Destroy our Food Crops", discussed the manifestation of the plant disease rust, a parasitic fungus that feeds on phytonutrients, in wheat, oat, and barley crops across the US. He had discovered that special plant breeding methods created plants resistant to rust. His research greatly interested Borlaug, and when Borlaug's job at the Forest Service was eliminated due to budget cuts, he asked Stakman if he should go into forest pathology. Stakman advised him to focus on plant pathology instead,[failed verification][10] and Borlaug subsequently re-enrolled to the University to study plant pathology under Stakman. Borlaug received his Master of Science degree in 1940 and Ph.D. in plant pathology and genetics in 1942.
Borlaug was a member of the Alpha Gamma Rho fraternity. He met his wife, Margaret Gibson, while in college, as he waited tables at a university Dinkytown coffee shop where they both worked. They had two children, Norma Jean "Jeanie" Laube and William Borlaug, five grandchildren, and six great-grandchildren. On March 8, 2007, Margaret Borlaug died at the age of 95, following a fall.[12] They had been married for 69 years. Borlaug spent the last years of his life in northern Dallas, although due to his global humanitarian efforts he resided there a few weeks of the year.
Career
From 1942 to 1944, Borlaug was employed as a microbiologist at DuPont in Wilmington, Delaware. It was planned that he would lead research on industrial and agricultural bacteriocides, fungicides, and preservatives. However, following the December 7, 1941 attack on Pearl Harbor, Borlaug tried to enlist in the military, but was rejected under wartime labor regulations; his lab was converted to do research for the United States armed forces. One of his first projects was to develop glue that could withstand the warm saltwater of the South Pacific. The Imperial Japanese Navy had gained control of the island of Guadalcanal, and patrolled the sky and sea by day. The only way that US forces could supply the troops stranded on the island was by approaching at night by speedboat, and jettisoning boxes of canned food and other supplies into the surf to wash ashore. The problem was that the glue holding these containers together disintegrated in saltwater. Within weeks, Borlaug and his colleagues had developed an adhesive that resisted corrosion, allowing food and supplies to reach the stranded Marines. Other tasks included work with camouflage, canteen disinfectants, DDT on malaria, and insulation for small electronics.[11]
In 1940, the Camacho administration took office in Mexico. The administration's primary goal for Mexican agriculture was augmenting the nation's industrialization and economic growth. US Vice President-Elect Henry Wallace, who was instrumental in persuading the Rockefeller Foundation to work with the Mexican government in agricultural development, saw Camacho's ambitions as beneficial to US economic and military interests.[13] The Rockefeller Foundation contacted E.C. Stakman and two other leading agronomists. They developed a proposal for a new organization, the Office of Special Studies, as part of the Mexican Government, but directed by the Rockefeller Foundation. It was to be staffed with both US and Mexican scientists, focusing on soil development, maize and wheat production, and plant pathology.
Stakman chose Dr. J. George "Dutch" Harrar as project leader. Harrar immediately set out to hire Borlaug as head of the newly established Cooperative Wheat Research and Production Program in Mexico; Borlaug declined, choosing to finish his war service at DuPont.[14] In July 1944, after rejecting DuPont's offer to double his salary, and temporarily leaving behind his pregnant wife and 14-month old daughter, he flew to Mexico City to head the new program as a geneticist and plant pathologist.[11]
In 1964, he was made the director of the International Wheat Improvement Program at El Batán, Texcoco, on the eastern fringes of Mexico City, as part of the newly established Consultative Group on International Agricultural Research's International Maize and Wheat Improvement Center (Centro Internacional de Mejoramiento de Maíz y Trigo, or CIMMYT), an autonomous international research training institute developed from the Cooperative Wheat Research Production Program, with funding jointly undertaken by the Ford and Rockefeller Foundations and the Mexican government.
Borlaug officially retired from the position in 1979. But he remained a senior consultant at the CIMMYT and continued to be involved in plant research at CIMMYT with wheat, triticale, barley, maize, and high-altitude sorghum, in addition to taking up charitable and educational roles.
Borlaug taught and researched at Texas A&M University from 1984 till his death. He was the Distinguished Professor of International Agriculture at the university and the holder of the Eugene Butler Endowed Chair in Agricultural Biotechnology.
Wheat research in Mexico
The Cooperative Wheat Research Production Program, a joint venture by the Rockefeller Foundation and the Mexican Ministry of Agriculture, involved research in genetics, plant breeding, plant pathology, entomology, agronomy, soil science, and cereal technology. The goal of the project was to boost wheat production in Mexico, which at the time was importing a large portion of its grain. George Harrar, a plant pathologist, recruited and assembled the wheat research team in late 1944. The four other members were Edward Wellhausen, maize breeder, John Niederhauser, potato breeder, William Colwell, and Norman Borlaug, all from the United States.[15] Borlaug would remain with the project for sixteen years. During this time, he bred a series of remarkably successful high-yield, disease-resistant, semi-dwarf wheat.
Borlaug said that his first couple of years in Mexico were difficult. He lacked trained scientists and equipment. Native farmers were hostile toward the wheat program because of serious crop losses from 1939 to 1941 due to stem rust. "It often appeared to me that I had made a dreadful mistake in accepting the position in Mexico," he wrote in the epilogue to his book, Norman Borlaug on World Hunger.[11] He spent the first 10 years breeding wheat cultivars resistant to disease, including rust. In that time, his group made 6,000 individual crossings of wheat.[16]
Double wheat season
Initially, his work had been concentrated in the central highlands, in the village of Chapingo near Texcoco, where the problems with rust and poor soil were most prevalent. But he realized that he could speed up breeding by taking advantage of the country's two growing seasons. In the summer he would breed wheat in the central highlands as usual, then immediately take the seeds north to the Yaqui Valley research station near Ciudad Obregón, Sonora. The difference in altitudes and temperatures would allow more crops to be grown each year.[citation needed]
His boss, George Harrar, was against this expansion. Besides the extra costs of doubling the work, Borlaug's plan went against a then-held principle of agronomy that has since been disproved. It was believed that seeds needed a rest period after harvesting, in order to store energy for germination before being planted. Harrar vetoed his plan, causing Borlaug to resign. Elvin Stakman, who was visiting the project, calmed the situation, talking Borlaug into withdrawing his resignation and Harrar into allowing the double wheat season. As of 1945, wheat would then be bred at locations 700 miles (1000 km) apart, 10 degrees apart in latitude, and 8500 feet (2600 m) apart in altitude. This was called "shuttle breeding".[citation needed]
As an unexpected benefit of the double wheat season, the new breeds did not have problems with photoperiodism. Normally, wheat varieties cannot adapt to new environments, due to the changing periods of sunlight. Borlaug later recalled, "As it worked out, in the north, we were planting when the days were getting shorter, at low elevation and high temperature. Then we'd take the seed from the best plants south and plant it at high elevation, when days were getting longer and there was lots of rain. Soon we had varieties that fit the whole range of conditions. That wasn't supposed to happen by the books".[16] This meant that the project wouldn't need to start separate breeding programs for each geographic region of the planet.
Increasing disease resistance through multiline varieties
Because pureline (genotypically identical) plant varieties often only have one or a few major genes for disease resistance, and plant diseases such as rust are continuously producing new races that can overcome a pureline's resistance, multiline varieties were developed. Multiline varieties are mixtures of several phenotypically similar purelines which each have different genes for disease resistance. By having similar heights, flowering and maturity dates, seed colors, and agronomic characteristics, they remain compatible with each other, and do not reduce yields when grown together on the field.[citation needed]
In 1953, Borlaug extended this technique by suggesting that several purelines with different resistance genes should be developed through backcross methods using one recurrent parent.[17] Backcrossing involves crossing a hybrid and subsequent generations with a recurrent parent. As a result, the genotype of the backcrossed progeny becomes increasingly similar to that of the recurrent parent. Borlaug's method would allow the various different disease-resistant genes from several donor parents to be transferred into a single recurrent parent. To make sure each line has different resistant genes, each donor parent is used in a separate backcross program. Between five and ten of these lines may then be mixed depending upon the races of pathogen present in the region. As this process is repeated, some lines will become susceptible to the pathogen. These lines can easily be replaced with new resistant lines. As new sources of resistance become available, new lines are developed. In this way, the loss of crops is kept to a minimum, because only one or a few lines become susceptible to a pathogen within a given season, and all other crops are unaffected by the disease. Because the disease would spread more slowly than if the entire population were susceptible, this also reduces the damage to susceptible lines. There is still the possibility that a new race of pathogen will develop to which all lines are susceptible, however.[18]
Dwarfing
Dwarfing is an important agronomic quality for wheat; dwarf plants produce thick stems and do not lodge. The cultivars Borlaug worked with had tall, thin stalks. Taller wheat grasses better compete for sunlight, but tend to collapse under the weight of the extra grain—a trait called lodging—and from the rapid growth spurts induced by nitrogen fertilizer Borlaug used in the poor soil. To prevent this, he bred wheat to favor shorter, stronger stalks that could better support larger seed heads. In 1953, he acquired a Japanese dwarf variety of wheat called Norin 10 developed by Orville Vogel, that had been crossed with a high-yielding American cultivar called Brevor 14.[19] Norin 10/Brevor is semi-dwarf (one-half to two-thirds the height of standard varieties) and produces more stalks and thus more heads of grain per plant. Also, larger amounts of assimilate were partitioned into the actual grains, further increasing the yield. Borlaug crossbred the semi-dwarf Norin 10/Brevor cultivar with his disease-resistant cultivars to produce wheat varieties that were adapted to tropical and sub-tropical climates.[20]
Borlaug's new semi-dwarf, disease-resistant varieties, called Pitic 62 and Penjamo 62, changed the potential yield of spring wheat dramatically. By 1963, 95% of Mexico's wheat crops used the semi-dwarf varieties developed by Borlaug. That year, the harvest was six times larger than in 1944, the year Borlaug arrived in Mexico. Mexico had become fully self-sufficient in wheat production, and a net exporter of wheat.[failed verification][21] Four other high yield varieties were also released, in 1964: Lerma Rojo 64, Siete Cerros, Sonora 64, and Super X.
Expansion to South Asia: The Green Revolution
In 1961 to 1962, Borlaug's dwarf spring wheat strains were sent for multilocation testing in the International Wheat Rust Nursery, organized by the US Department of Agriculture. In March 1962, a few of these strains were grown in the fields of the Indian Agricultural Research Institute in Pusa, New Delhi, India. In May 1962, M. S. Swaminathan, a member of IARI's wheat program, requested of Dr. B.P. Pal, Director of IARI, to arrange for the visit of Borlaug to India and to obtain a wide range of dwarf wheat seed possessing the Norin 10 dwarfing genes.[citation needed] The letter was forwarded to the Indian Ministry of Agriculture, which arranged with the Rockefeller Foundation for Borlaug's visit. In March 1963, the Rockefeller Foundation and the Mexican government sent Borlaug and Dr. Robert Glenn Anderson to India to continue his work. He supplied 100 kg (220 lb) of seed from each of the four most promising strains and 630 promising selections in advanced generations to the IARI in October 1963, and test plots were subsequently planted at Delhi, Ludhiana, Pant Nagar, Kanpur, Pune and Indore.[citation needed] Anderson stayed as head of the RF Wheat Program in New Delhi until 1975.
During the mid-1960s, the Indian subcontinent was at war, and experiencing widespread famine and starvation, even though the US was making emergency shipments of millions of tons of grain, including over one fifth of its total wheat, to the region.[15] The Indian and Pakistani bureaucracies and the region's cultural opposition to new agricultural techniques initially prevented Borlaug from fulfilling his desire to immediately plant the new wheat strains there. By the summer of 1965, the famine became so acute that the governments stepped in and allowed his projects to go forward.[11]
Biologist Paul R. Ehrlich wrote in his 1968 bestseller The Population Bomb, "The battle to feed all of humanity is over... In the 1970s and 1980s hundreds of millions of people will starve to death in spite of any crash programs embarked upon now." Ehrlich said, "I have yet to meet anyone familiar with the situation who thinks India will be self-sufficient in food by 1971," and "India couldn't possibly feed two hundred million more people by 1980."[citation needed]
In 1965, after extensive testing, Borlaug's team, under Anderson, began its effort by importing about 450 tons of Lerma Rojo and Sonora 64 semi-dwarf seed varieties: 250 tons went to Pakistan and 200 to India. They encountered many obstacles. Their first shipment of wheat was held up in Mexican customs and so could not be shipped from the port at Guaymas in time for proper planting.[citation needed] Instead, it was sent via a 30-truck convoy from Mexico to the US port in Los Angeles (LA), encountering delays at the US-Mexico border. Once the convoy entered the US, it had to take a detour, as the US National Guard had closed the freeway due to Watts riots in LA. When the seeds reached LA, a Mexican bank refused to honor Pakistan treasury's payment of US$100,000 because the check contained three misspelled words. Still, the seed was loaded onto a freighter destined for Bombay, India, and Karachi, Pakistan. Twelve hours into the freighter's voyage, war broke out between India and Pakistan over the Kashmir region. Borlaug received a telegraph from the Pakistani minister of agriculture, Malik Khuda Bakhsh Bucha: "I'm sorry to hear you are having trouble with my check, but I've got troubles, too. Bombs are falling on my front lawn. Be patient, the money is in the bank..."[11]
These delays prevented Borlaug's group from conducting the germination tests needed to determine seed quality and proper seeding levels. They started planting immediately, and often worked in sight of artillery flashes. A week later, Borlaug discovered that his seeds were germinating at less than half the normal rate.[citation needed] It later turned out that the seeds had been damaged in a Mexican warehouse by over-fumigation with a pesticide. He immediately ordered all locations to double their seeding rates.[citation needed]
The initial yields of Borlaug's crops were higher than any ever harvested in South Asia. The countries subsequently committed to importing large quantities of both the Lerma Rojo 64 and Sonora 64 varieties. In 1966, India imported 18,000 tons —the largest purchase and import of any seed in the world at that time. In 1967, Pakistan imported 42,000 tons, and Turkey 21,000 tons. Pakistan's import, planted on 1.5 million acres (6,100 km²), produced enough wheat to seed the entire nation's wheatland the following year.[15] By 1968, when Ehrlich's book was released, William Gaud of the United States Agency for International Development was calling Borlaug's work a "Green Revolution". High yields led to a shortage of various utilities: labor to harvest the crops, bullock carts to haul it to the threshing floor, jute bags, trucks, rail cars, and grain storage facilities. Some local governments were forced to close school buildings temporarily to use them for grain storage.[11]
In Pakistan, wheat yields nearly doubled, from 4.6 million tons in 1965 to 7.3 million tons in 1970; Pakistan was self-sufficient in wheat production by 1968.[citation needed] Yields were over 21 million tons by 2000. In India, yields increased from 12.3 million tons in 1965 to 20.1 million tons in 1970. By 1974, India was self-sufficient in the production of all cereals. By 2000, India was harvesting a record 76.4 million tons (2.81 billion bushels) of wheat. Since the 1960s, food production in both nations has increased faster than the rate of population growth.[citation needed] Paul Waggoner, of the Connecticut Agricultural Experiment Station, calculates that India's use of high-yield farming has prevented 100 million acres (400,000 km²) of virgin land from being converted into farmland—an area about the size of California, or 13.6% of the total area of India.[22] The use of these wheat varieties has also had a substantial effect on production in six Latin American countries, six countries in the Near and Middle East, and several others in Africa.[citation needed]
Borlaug's work with wheat led to the development of high-yield semi-dwarf indica and japonica rice cultivars at the International Rice Research Institute, started by the Ford and Rockefeller Foundations, and at China's Hunan Rice Research Institute. Borlaug's colleagues at the Consultative Group on International Agricultural Research also developed and introduced a high-yield variety of rice throughout most of Asia. Land devoted to the semi-dwarf wheat and rice varieties in Asia expanded from 200 acres (0.8 km²) in 1965 to over 40 million acres (160,000 km²) in 1970. In 1970, this land accounted for over 10% of the more productive cereal land in Asia.[15]
Nobel Peace Prize
For his contributions to the world food supply, Borlaug was awarded the Nobel Peace Prize in 1970. Norwegian officials notified his wife in Mexico City at 4:00AM, but Borlaug had already left for the test fields in the Toluca valley, about 40 miles (65 km) west of Mexico City. A chauffeur took her to the fields to inform her husband. According to his daughter, Jeanie Laube, "My mom said, 'You won the Nobel Peace Prize,' and he said, 'No, I haven't',... It took some convincing... He thought the whole thing was a hoax".[11] He was awarded the prize on December 10. In his Nobel Lecture the following day, he speculated on his award: "When the Nobel Peace Prize Committee designated me the recipient of the 1970 award for my contribution to the 'green revolution', they were in effect, I believe, selecting an individual to symbolize the vital role of agriculture and food production in a world that is hungry, both for bread and for peace".[23]
Borlaug hypothesis
Borlaug has continually advocated increasing crop yields as a means to curb deforestation. The large role he has played in both increasing crop yields and promoting this view has led to this methodology being called by agricultural economists the "Borlaug hypothesis", namely that increasing the productivity of agriculture on the best farmland can help control deforestation by reducing the demand for new farmland. According to this view, assuming that global food demand is on the rise, restricting crop usage to traditional low-yield methods such as organic farming would also require at least one of the following: the world population to decrease, either voluntarily or as a result of mass starvations; or the conversion of forest land into crop land. It is thus argued that high-yield techniques are ultimately saving ecosystems from destruction. On a global scale, this view holds strictly true ceteris paribus, if all land either consists of forests or is used for agriculture. But other land uses exist, such as urban areas, pasture, or fallow, so further research is necessary to ascertain what land has been converted for what purposes, in order to determine how true this view remains. Increased profits from high-yield production may also induce cropland expansion in any case, although as world food needs decrease, this expansion may decrease as well.[failed verification][24]
Criticisms and his view of critics
As Borlaug's name is nearly synonymous with the Green Revolution, over the decades environmentalists, nutritionists, progressives, and economists have mounted many criticisms of the Green Revolution. Throughout his years of research, Borlaug's programs often faced opposition by people who consider genetic crossbreeding to be unnatural or to have negative effects.[25] Borlaug's work has been criticized for bringing large-scale monoculture, input-intensive farming techniques to countries that had previously relied on subsistence farming.[26] These farming techniques reap large profits for US agribusiness and agrichemical corporations such as Monsanto Company and have been criticized for widening social inequality in the countries owing to uneven food distribution while forcing a capitalist agenda of US corporations onto countries that had undergone land reform.[27] There are also concerns about the long-term sustainability of farming practices encouraged by the Green Revolution in both the developed and developing world.[citation needed]
Other concerns of his critics and critics of biotechnology in general include: that the construction of roads in populated third-world areas could lead to the destruction of wilderness; the crossing of genetic barriers; the inability of crops to fulfill all nutritional requirements; the decreased biodiversity from planting a small number of varieties; the environmental and economic effects of inorganic fertilizer and pesticides; the amount of herbicide sprayed on fields of herbicide-resistant crops.[28]
Borlaug had dismissed most claims of critics, but does take certain concerns seriously. He stated that his work has been "a change in the right direction, but it has not transformed the world into a Utopia".[29] Of environmental lobbyists he has stated, "some of the environmental lobbyists of the Western nations are the salt of the earth, but many of them are elitists. They've never experienced the physical sensation of hunger. They do their lobbying from comfortable office suites in Washington or Brussels. If they lived just one month amid the misery of the developing world, as I have for fifty years, they'd be crying out for tractors and fertilizer and irrigation canals and be outraged that fashionable elitists back home were trying to deny them these things".[30]
Later roles
Following his retirement, Borlaug had continued to participate actively in teaching, research and activism. He spent much of the year based at CIMMYT in Mexico, conducting research, and four months of the year serving at Texas A&M University, where he had been a distinguished professor of international agriculture since 1984. In 1999, the university's Board of Regents named its US$16 million Center for Southern Crop Improvement in honor of Borlaug. He worked in the building's Heep Center, and taught one semester each year.[11]
Production in Africa
In the early 1980s, environmental groups that were opposed to Borlaug's methods campaigned against his planned expansion of efforts into Africa. They prompted the Rockefeller and Ford Foundations and the World Bank to stop funding most of his African agriculture projects. Western European governments were persuaded to stop supplying fertilizer to Africa. According to David Seckler, former Director General of the International Water Management Institute, "the environmental community in the 1980s went crazy pressuring the donor countries and the big foundations not to support ideas like inorganic fertilizers for Africa."[22]
In 1984, during the Ethiopian famine, Ryoichi Sasakawa, the chairman of the Japan Shipbuilding Industry Foundation (now the Nippon Foundation), contacted the semi-retired Borlaug, wondering why the methods used in Asia were not extended to Africa, and hoping Borlaug could help. He managed to convince Borlaug to help with this new effort,[31] and subsequently founded the Sasakawa Africa Association (SAA) to coordinate the project.
The SAA is a research and extension organization that aims to increase food production in African countries that are struggling with food shortages. "I assumed we'd do a few years of research first," Borlaug later recalled, "but after I saw the terrible circumstances there, I said, 'Let's just start growing'."[22] Soon, Borlaug and the SAA had projects in seven countries. Yields of maize and sorghum in developed African countries doubled between 1983 and 1985.[failed verification][32] Yields of wheat, cassava, and cowpeas also increased in these countries.[citation needed] At present, program activities are under way in Benin, Burkina Faso, Ethiopia, Ghana, Guinea, Mali, Malawi, Mozambique, Nigeria, Tanzania, and Uganda.
Since 1986, Borlaug has been the President of the SAA. That year, a joint venture between The Carter Center and SAA was launched called Sasakawa-Global 2000 (SG 2000).[33] The program focuses on food, population and agricultural policy.[34] Since then, more than 8 million African, small-scale farmers in 15 countries have been trained in SAA farming techniques, which have helped them to double or triple grain production.[35] Those elements that allowed Borlaug's projects to succeed in India and Pakistan, such as well-organized economies and transportation and irrigation systems, are severely lacking throughout Africa, posing additional obstacles to increasing yields. Because of this, Borlaug's initial projects were restricted to developed regions of the continent.
Despite these setbacks, Borlaug has found encouragement. Visiting Ethiopia in 1994, Jimmy Carter won Prime Minister Meles Zenawi's support for a campaign seeking to aid farmers, using the fertilizer diammonium phosphate and Borlaug's methods. The following season, Ethiopia recorded the largest harvests of major crops in history, with a 32% increase in production, and a 15% increase in average yield over the previous season. For Borlaug, the rapid increase in yields suggests that there is still hope for higher food production throughout sub-Saharan Africa.[22]
World Food Prize
The World Food Prize is an international award recognizing the achievements of individuals who have advanced human development by improving the quality, quantity or availability of food in the world. The prize was created in 1986 by Norman Borlaug, as a way to recognize personal accomplishments, and as a means of education by using the Prize to establish role models for others. The first prize was given to Borlaug's former colleague, M. S. Swaminathan, in 1987, for his work in India. The next year, Swaminathan used the US$250,000 prize to start the MS Swaminathan Research Foundation for research on sustainable development topics.
Online education
At the DuPont Agriculture & Nutrition Media Day held in Des Moines, Iowa, on September 25, 2000, Borlaug announced the launch of Norman Borlaug University, an Internet-based learning company for the agriculture and food industry personnel. The University was unable to expand the necessary content or customer base, and since late 2001 has been defunct.
The future of global farming and food supply
The limited potential for land expansion for cultivation worries Borlaug, who, in March 2005, stated that, "we will have to double the world food supply by 2050." With 85% of future growth in food production having to come from lands already in use, he recommends a multidisciplinary research focus to further increase yields, mainly through increased crop immunity to large-scale diseases, such as the rust fungus, which affects all cereals but rice. His dream is to "transfer rice immunity to cereals such as wheat, maize, sorghum and barley, and transfer bread-wheat proteins (gliadin and glutenin) to other cereals, especially rice and maize".[36]
According to Borlaug, "Africa, the former Soviet republics, and the cerrado are the last frontiers. After they are in use, the world will have no additional sizable blocks of arable land left to put into production, unless you are willing to level whole forests, which you should not do. So, future food-production increases will have to come from higher yields. And though I have no doubt yields will keep going up, whether they can go up enough to feed the population monster is another matter. Unless progress with agricultural yields remains very strong, the next century will experience sheer human misery that, on a numerical scale, will exceed the worst of everything that has come before".[22]
Besides increasing the worldwide food supply, Borlaug had repeatedly stated that taking steps to decrease the rate of population growth will also be necessary to prevent food shortages. In his Nobel Lecture of 1970, Borlaug stated, "Most people still fail to comprehend the magnitude and menace of the 'Population Monster'...If it continues to increase at the estimated present rate of two percent a year, the world population will reach 6.5 billion by the year 2000. Currently, with each second, or tick of the clock, about 2.2 additional people are added to the world population. The rhythm of increase will accelerate to 2.7, 3.3, and 4.0 for each tick of the clock by 1980, 1990, and 2000, respectively, unless man becomes more realistic and preoccupied about this impending doom. The tick-tock of the clock will continually grow louder and more menacing each decade. Where will it all end?"[23]
Death
Borlaug passed away at the age of 95 at approximately 11 p.m. on September 12, 2009 in his Dallas home.[1] He died of cancer.[37]
Honors and recognition
In 1968, Borlaug received what he considered an especially satisfying tribute when the people of Ciudad Obregón, where some of his earliest experiments were undertaken, named a street after him. Also in that year, he became a member of the U.S. National Academy of Sciences.
In 1970, he was given an honorary doctorate by the Agricultural University of Norway.[38]
In 1980, he was elected honorary member of the Hungarian Academy of Sciences.
In 1984, his name was placed in the National Agricultural Hall of Fame at the national center in Bonner Springs, Kansas. Also that year, he was recognized for sustained service to humanity through outstanding contributions in plant breeding from the Governors Conference on Agriculture Innovations in Little Rock, Arkansas. Also in 1984, he received the Henry G. Bennet Distinguished Service Award at commencement ceremonies at Oklahoma State University. He recently received the Charles A. Black Award for his contributions to public policy and the public understanding of science.
In addition to the Nobel Prize, Borlaug has also received the 1977 U.S. Presidential Medal of Freedom, the 2002 Public Welfare Medal from the U.S. National Academy of Sciences, the 2002 Rotary International Award for World Understanding and Peace, and the 2004 National Medal of Science. As of January 2004, Borlaug had received 49 honorary degrees from as many universities, in 18 countries, the most recent from Dartmouth College on June 12, 2005, [39] and was a foreign or honorary member of 22 international Academies of Sciences.[40] In Iowa and Minnesota, "World Food Day", October 16, is referred to as "Norman Borlaug World Food Prize Day". Throughout the United States, it is referred to as "World Food Prize Day".
The Government of India conferred the Padma Vibhushan, its second highest civilian award on him in 2006. Dr. Borlaug also received the National Medal of Science the United States' highest scientific honor, from U.S. President George W. Bush on February 13, 2006. He was awarded the Danforth Award for Plant Science by the Donald Danforth Plant Science Center, St Louis, Missouri in recognition of his life-long commitment to increasing global agricultural production through plant science.
Several research institutions and buildings have been named in his honor, including: the Norman E. Borlaug Center for Farmer Training and Education, Santa Cruz de la Sierra, Bolivia, in 1983; Borlaug Hall, on the St. Paul Campus of the University of Minnesota in 1985; Borlaug Building at the International Maize and Wheat Improvement Center (CIMMYT) headquarters in 1986; the Norman Borlaug Institute for Plant Science Research at De Montfort University, Leicester, United Kingdom in 1997; and the Norman E. Borlaug Center for Southern Crop Improvement, at Texas A&M University in 1999. In 2006, the Texas A&M University System created the Norman Borlaug Institute for International Agriculture to be a premier institution for agricultural development and to continue the legacy of Dr. Borlaug.
The stained-glass "World Peace Window" at St. Mark's Cathedral in Minneapolis, Minnesota, depicts "peace makers" of the 20th century, including Norman Borlaug.[41] Borlaug was also prominently mentioned in an episode ("In this White House") of the The West Wing television show. The president of a fictional African country describes the kind of "miracle" needed to save his country from the ravages of AIDS by referencing an American scientist who was able to save the world from hunger through the development of a new type of wheat. The U.S. president replies by providing Borlaug's name.
Borlaug was also featured in an episode of Penn & Teller: Bullshit!, where he was referred to as the "Greatest Human Being That Ever Lived". In that episode, Penn & Teller play a card game where each card depicts a great person in history. Each player picks a few cards at random, and bets on whether one thinks one's card shows a greater person than the other players' cards based on a characterization such as humanitarianism or scientific achievement. Penn gets Norman Borlaug, and proceeds to bet all his chips, his house, his rings, his watch, and essentially everything he's ever owned. He wins because, as he says, "Norman is the greatest human being, and you've probably never heard of him." In the episode—the topic of which was genetically altered food—he is credited with saving the lives of over a billion people.
In August 2006, Dr. Leon Hesser published The Man Who Fed the World: Nobel Peace Prize Laureate Norman Borlaug and His Battle to End World Hunger, an account of Borlaug's life and work. On August 4, the book received the 2006 Print of Peace award, as part of International Read For Peace Week.
On September 27, 2006, the United States Senate by unanimous consent passed the Congressional Tribute to Dr. Norman E. Borlaug Act of 2006. The act authorizes that Borlaug be awarded America's highest civilian award, the Congressional Gold Medal. On December 6, 2006, the House of Representatives passed the measure by voice vote. President George Bush signed the bill into law on December 14, 2006, and it became Public Law Number 109–395. According to the act, "Dr. Borlaug has saved more lives than any other person who has ever lived, and likely has saved more lives in the Islamic world than any other human being in history." The act authorizes the Secretary of the Treasury to strike and sell duplicates of the medal in bronze. He was presented with the medal on July 17, 2007.[42]
Dr. Borlaug was a foreign fellow of the Bangladesh Academy of Sciences.[43]
Books and lectures
- This list is incomplete.
- Wheat in the Third World. 1982. Authors: Haldore Hanson, Norman E. Borlaug, and R. Glenn Anderson. Boulder, Colorado: Westview Press. ISBN 0-86531-357-1
- Land use, food, energy and recreation. 1983. Aspen Institute for Humanistic Studies. ISBN 0-940222-07-8
- Feeding a human population that increasingly crowds a fragile planet. 1994. Mexico City. ISBN
968-6201-34-3
- Norman Borlaug on World Hunger. 1997. Edited by Anwar Dil. San Diego/Islamabad/Lahore: Bookservice International. 499 pages. ISBN 0-9640492-3-6
- The Green Revolution Revisited and the Road Ahead. 2000. Anniversary Nobel Lecture, Norwegian Nobel Institute in Oslo, Norway. September 8, 2000.
- "Ending World Hunger. The Promise of Biotechnology and the Threat of Antiscience Zealotry". 2000. Plant Physiology, October 2000, Vol. 124, pp. 487–490. (duplicate)
- Feeding a World of 10 Billion People: The Tva/Ifdc Legacy. 2003. ISBN 0-88090-144-6
- Prospects for world agriculture in the twenty-first century. 2004. Norman E. Borlaug, Christopher R. Dowswell. Published in: Sustainable agriculture and the international rice-wheat system. ISBN 0-8247-5491-3
- Foreword to The Frankenfood Myth: How Protest and Politics Threaten the Biotech Revolution. 2004. Henry I. Miller, Gregory Conko. ISBN 0-275-97879-6
- Norman E. Borlaug (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157:287–297 ([44])
Further reading
- Bickel, Lennard (1974). Facing starvation; Norman Borlaug and the fight against hunger. Pleasantville, N.Y.: Reader's Digest Press; distributed by Dutton, New York. ISBN 0-88349-015-3.
- Hesser, Leon (2006). The Man Who Fed the World: Nobel Peace Prize Laureate Norman Borlaug and His Battle to End World Hunger. Durban House. ISBN 1930754906.
References
- ^ a b "Nobel Prize winner Norman Borlaug dies at 95".
- ^ "The father of the 'Green Revolution'". Did You Know?. University of Minnesota. Retrieved 2006-09-24.
- ^ "Food Researcher Awarded Congressional Gold Medal". US State Department’s Bureau of International Information Programs. Retrieved 2008-02-17.
- ^ Woodward, Billy (2009), "Norman Borlaug—Over 245 Million Lives Saved", Scientists Greater than Einstein: The Biggest Lifesavers of the Twentieth Century, Quill Driver Books, ISBN 1-884956-87-4
{{citation}}
: Unknown parameter|city=
ignored (|location=
suggested) (help) - ^ The phrase "over a billion lives saved" is often cited by others in reference to Norman Borlaug's work (e.g. [1]). According to Jan Douglas here, Executive Assistant to the World Prize Foundation, the source of this number is Gregg Easterbrook's 1997 article "Forgotten Benefactor of Humanity", the article states that the "form of agriculture that Borlaug preaches may have prevented a billion deaths."
- ^ RootsWeb. Borlaug genealogy
- ^ "History of the Norwegian Community, Chickasaw, Iowa". Telelaget of America.
- ^ State Historical Society of Iowa. 2002. FY03 HRDP/REAP Grant Application Approval
- ^ Iowa Rep. Tom Latham Pays Tribute to Dr. Borlaug World Food Prize. Retrieved 2009-09-06
- ^ a b [failed verification]University of Minnesota. 2005. Borlaug and the University of Minnesota
- ^ a b c d e f g h i j "Green Giant". Stuertz, Mark. Dallas Observer. 5 December 2002.
- ^ "Norman Borlaug's wife dies at age 95 in Dallas". Houston Chronicle. 8 March 2007. Retrieved 2007-03-16.
- ^ Wright, Angus 2005. The Death of Ramón González]
- ^ Davidson, M.G. 1997. An Abundant Harvest: Interview with Norman Borlaug, Recipient, Nobel Peace Prize, 1970, Common Ground, August 12
- ^ a b c d Brown, L. R. 1970. Nobel Peace Prize: developer of high-yield wheat receives award (Norman Ernest Borlaug). Science, 30 October 1970;170(957):518-9.
- ^ a b University of Minnesota. 2005. Borlaug's Work in Mexico
- ^ Borlaug, N.E. 1953. New approach to the breeding of wheat varieties resistant to Puccinia graminis tritici. Phytopathology, 43:467
- ^ "AGB 301: Principles and Methods of Plant Breeding". Tamil Nadu Agricultural University.
- ^ Retiz, L.P. 1970. New wheats and social progress. Science,169:952–955
- ^ Hedden, P. 2003. The genes of the Green Revolution. Trends in Genetics, 19:5–9 PMID 12493241
- ^ [failed verification]University of Minnesota. 2005. The Beginning of the Green Revolution
- ^ a b c d e Easterbrook, G. 1997. Forgotten Benefactor of Humanity. The Atlantic Monthly.
- ^ a b Borlaug, N. E. 1972. Nobel Lecture, December 11, 1970. From Nobel Lectures, Peace 1951–1970, Frederick W. Haberman Ed., Elsevier Publishing Company, Amsterdam
- ^ [failed verification]Angelsen, A., and D. Kaimowitz. 2001. "The Role of Agricultural Technologies in Tropical Deforestation". Agricultural Technologies and Tropical Deforestation. CABI Publishing, New York
- ^ Borlaug, Norman; Garrett, Peter (December 18, 1999), "Between the Tynes / Chronicles of the Future - Program 6 Earth, wind & fire", The Weekend Australian
{{citation}}
: CS1 maint: date and year (link) - ^ Leonard, Andrew (July 16, 2007), "Show organic farmers the money", Salon.com
- ^ Cockburn, Alexander (June 29, 2003), "Corporate Interests Keep World's Poor Hungry", Sunday Business Post
- ^ Billions served. Interview with Reason Magazine. April 2000
- ^ Herbert Hoover Presidential Library and Museum. 2002.Error in Webarchive template: Empty url.
- ^ Tierney, John (2008). "Greens and Hunger". TierneyLab - Putting Ideas in Science to the Test. New York Times. Retrieved 2009-02-13.
- ^ Press, Robert. "Borlaug: sowing `Green Revolution' among African leaders". Christian Science Monitor. Retrieved 2009-09-06.
- ^ [failed verification]FAO Statistics Database
- ^ The Carter Center, "Norman Borlaug, Senior Consultant in Agriculture.” ", retrieved 2008-07-17
- ^ The Carter Center, "The Carter Center Agriculture Program.” ", retrieved 2008-07-17
- ^ The Carter Center (2007-05-02), "Exhibit to Highlight Progress For Peace, Health, Human Rights.”, retrieved 2008-07-17
- ^ The Murugappa Group. 2005. Food for Thought
- ^ "Nobel Prize-winning scientist Norman Borlaug, father of the 'green revolution,' dies at age 95".
- ^ "Nobel Peace Prize 1970—Presentation Speech".
- ^ "Biographical background on 2005 Dartmouth honorary degree recipientsNORMAN E. BORLAUG(Doctor of Science)". www.dartmouth.edu. Retrieved 2009-08-24.
- ^ Dr. Norman E. Borlaug's Curriculum Vitae
- ^ Bjordal, J. Cathedral Peace Window honors Dr Norman Borlaug and Jimmy Carter Journal of the American Chestnut Foundation, vol. 18 no.2 Fall 2004, p.9. Retrieved 2009-09-06.
- ^ Norman Borlaug Awarded Congressional Gold Medal, America's Highest Civilian Honor July 17, 2007
- ^ List of Fellows of Bangladesh Academy of Sciences
- ^ Borlaug, Norman E. (June 27, 2007). "Sixty-two years of fighting hunger: personal recollections". Euphytica. 157. Dx.doi.org: 287. doi:10.1007/s10681-007-9480-9. Retrieved 2008-09-05.
External links
Videos and speeches
- Lecture, Nobel Centennial Symposia. 2001 December 6. RealMedia. 00:11:34.
- Lecture, The Famous Purdue Ag Fish Fry. 2003 February 8. MS Media. 02:21:02.
- 30th Anniversary Nobel Lecture. The Green Revolution Revisited and the Road Ahead. 2000. Transcript. PDF.
- "Borlaug on Need for Increasing Food Supply". Archived from the original on 2007-07-02.. 2000. Transcript.
- Dedication lecture, Delaware Biotechnology Institute. Feeding the World in the 21st century—The Role of New Science and Technology. 2001 April 26. RealMedia. 00:47:42.
- The Story of Norman Borlaug: 60 Years Fighting Hunger. 2003 July 10. RealMedia. 01:29:02.
- Discussion, Beahrs Environmental Leadership Program. 2004 January 5–9. University of California, Berkeley. Text.
- ECON100A Lecture, University of California, Berkeley. 2004 Spring. RealMedia. 01:29:02.
- Commencement address, University of Minnesota. 2004 May. CD track.
- CEI Prometheus award acceptance speech. 2004 May 19. MS Media. 00:10:57.
- Inaugural address, 1st World Congress of Agroforestry. 2004 June 27. Orlando, Florida, USA. RealMedia. 01:06:34.
- Keynote speech, USDA Agricultural Outlook Forum. 2005 February 24. Arlington, Virginia, USA. MS Media. 35 minutes.
- Radio interview by Penn Jillette. 2006 August 9. MP3 format. 00:43:27.
- Borlaug's York Lecture at American Society of Agronomy Annual Meetings. Challenges for the Crop Scientist in the 21st Century. 2007. Windows Media and Quicktime
Organizations and programs
- Norman Borlaug Institute for International Agriculture - Texas A&M University System
- The Borlaug Center for Southern Crop Improvement - Texas A&M University System
- Norman E. Borlaug International Agricultural Science and Technology Fellows Program
Interview
Other
- The Life and Work of Norman Borlaug, Nobel Laureate
- "Biotechnology and the Green Revolution", interview from November 2002
- Norman Borlaug: The Legend (agbioworld.com)
- Journal articles by Borlaug on PubMed
- List of Norman Borlaug articles and interviews
- "Billions Served", an interview in Reason by Ronald Bailey.
- "Stem Rust Never Sleeps" New York Times article by him on current epidemic affecting the world’s wheat crops and, potentially, food supply
- Recent deaths
- 1914 births
- 2009 deaths
- American agronomists
- American biologists
- American Council on Science and Health
- American humanitarians
- American sport wrestlers
- Cancer deaths in Texas
- Congressional Gold Medal recipients
- Development specialists
- Fellows of the American Academy of Arts and Sciences
- Fellows of the Royal Society of Edinburgh
- Foreign Members of the Royal Society
- Members of the Hungarian Academy of Sciences
- Inductees of the Brazilian Order of Scientific Merit
- Members of the Brazilian Academy of Sciences
- Members of the National Academy of Sciences
- Members of the Polish Academy of Sciences
- Members of the Royal Swedish Academy of Agriculture and Forestry
- Mexican Academy of Sciences
- National Medal of Science laureates
- Nobel Peace Prize laureates
- Norwegian Academy of Science and Letters
- Norwegian Americans
- Recipients of the Padma Vibhushan
- People from Dallas, Texas
- People from Howard County, Iowa
- People from Minnesota
- Presidential Medal of Freedom recipients
- Rockefeller Foundation
- Third World Academy of Sciences
- University of Minnesota alumni
- University of Minnesota
- Vannevar Bush Award recipients
- Fellows of Bangladesh Academy of Sciences