Page semi-protected

Amphetamine

From Wikipedia, the free encyclopedia
  (Redirected from Amfetamine)
Jump to: navigation, search
This article is about mixtures of levoamphetamine and dextroamphetamine. For other uses, see Amphetamine (disambiguation).
Amphetamine
An image of the amphetamine compound
A 3d image of the D-amphetamine compound
Systematic (IUPAC) name
(RS)-1-phenylpropan-2-amine
(RS)-1-phenyl-2-aminopropane
Clinical data
AHFS/Drugs.com entry
Licence data US FDA:link
Pregnancy
category
  • US: C (Risk not ruled out)
Legal status
Dependence
liability
Physical: none
Psychological: moderate
Addiction
liability
Moderate
Routes of
administration
Medical: oral, nasal inhalation
Recreational: oral, nasal inhalation, insufflation, rectal, intravenous
Pharmacokinetic data
Bioavailability Rectal 95–100%; Oral 75–100%[1]
Protein binding 15–40%[2]
Metabolism CYP2D6,[3] DBH,[4][5][6] FMO3,[7][8] XM-ligase,[9] and ACGNAT[10]
Metabolites 4-hydroxyamphetamine, 4-hydroxynorephedrine, 4-hydroxyphenylacetone, benzoic acid, hippuric acid, norephedrine, phenylacetone[3][11][12]
Onset of action IR dosing: Immediate
XR dosing: 1.5–2 hours[13][14]
Biological half-life D-amph:9–11 hours[3][15]
L-amph:11–14 hours[3][15]
pH-dependent: 8–31 hours[16]
Duration of action IR dosing: 3–7 hours[13][17]
XR dosing: 12 hours[13][14][17]
Excretion Renal; pH-dependent range: 1–75%[3]
Identifiers
CAS Registry Number 300-62-9 YesY
ATC code N06BA01
PubChem CID: 3007
IUPHAR/BPS 4804
DrugBank DB00182 YesY
ChemSpider 13852819 YesY
UNII CK833KGX7E YesY
KEGG D07445 YesY
ChEBI CHEBI:2679 YesY
ChEMBL CHEMBL405 YesY
NIAID ChemDB 018564
Synonyms α-methylphenethylamine
PDB ligand ID FRD (PDBe, RCSB PDB)
Chemical data
Formula C9H13N
Molecular mass 135.20622 g/mol[18]
Physical data
Density 0.9±0.1 g/cm3
Melting point 11.3 °C (52.3 °F) (predicted)[19]
Boiling point 203 °C (397 °F) at 760 mm Hg[20]
 YesY (what is this?)  (verify)

Amphetamine[note 1] (pronunciation: Listeni/æmˈfɛtəmn/; contracted from alphamethylphenethylamine) is a potent central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy. Amphetamine was discovered in 1887 and exists as two enantiomers:[note 2] levoamphetamine and dextroamphetamine. Amphetamine properly refers to a specific chemical, the racemic free base, which is equal parts of the two enantiomers, levoamphetamine and dextroamphetamine, in their pure amine forms. However, the term is frequently used informally to refer to any combination of the enantiomers, or to either of them alone. Historically, it has been used to treat nasal congestion, depression, and obesity. Amphetamine is also used as a performance and cognitive enhancer, and recreationally as an aphrodisiac and euphoriant. It is a prescription medication in many countries, and unauthorized possession and distribution of amphetamine are often tightly controlled due to the significant health risks associated with recreational use.[sources 1]

The first pharmaceutical amphetamine was Benzedrine, a brand of inhalers used to treat a variety of conditions. Currently, pharmaceutical amphetamine is typically prescribed as Adderall,[note 3] dextroamphetamine, or the inactive prodrug lisdexamfetamine. Amphetamine, through activation of a trace amine receptor, increases biogenic amine and excitatory neurotransmitter activity in the brain, with its most pronounced effects targeting the catecholamine neurotransmitters norepinephrine and dopamine. At therapeutic doses, this causes emotional and cognitive effects such as euphoria, change in libido, increased wakefulness, and improved cognitive control. It induces physical effects such as decreased reaction time, fatigue resistance, and increased muscle strength.[sources 2]

Much larger doses of amphetamine may impair cognitive function and induce rapid muscle breakdown. Drug addiction is a serious risk with large recreational doses, but rarely arises from medical use. Very high doses can result in psychosis (e.g., delusions and paranoia) which rarely occurs at therapeutic doses even during long-term use. Recreational doses are generally much larger than prescribed therapeutic doses and carry a far greater risk of serious side effects.[sources 3]

Amphetamine belongs to the phenethylamine class. It is also the parent compound of its own structural class, the substituted amphetamines,[note 4] which includes prominent substances such as bupropion, cathinone, MDMA (ecstasy), and methamphetamine. As a member of the phenethylamine class, amphetamine is also chemically related to the naturally occurring trace amine neuromodulators, specifically phenethylamine[note 5] and N-methylphenethylamine, both of which are produced within the human body. Phenethylamine is the parent compound of amphetamine, while N-methylphenethylamine is a constitutional isomer that differs only in the placement of the methyl group.[sources 4]

Uses

Medical

Amphetamine is used to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy (a sleep disorder), and is sometimes prescribed off-label for its past medical indications, such as depression, obesity, and nasal congestion.[15][24] Long-term amphetamine exposure in some animal species is known to produce abnormal dopamine system development or nerve damage,[45][46] but, in humans with ADHD, pharmaceutical amphetamines appear to improve brain development and nerve growth.[47][48][49] Reviews of magnetic resonance imaging (MRI) studies suggest that long-term treatment with amphetamine decreases abnormalities in brain structure and function found in subjects with ADHD, and improves function in several parts of the brain, such as the right caudate nucleus of the basal ganglia.[47][48][49]

Reviews of clinical stimulant research have established the safety and effectiveness of long-term amphetamine use for ADHD.[50][51][52] Controlled trials spanning two years have demonstrated treatment effectiveness and safety.[50][52] One review highlighted a nine-month randomized controlled trial in children with ADHD that found an average increase of 4.5 IQ points, continued increases in attention, and continued decreases in disruptive behaviors and hyperactivity.[50]

Current models of ADHD suggest that it is associated with functional impairments in some of the brain's neurotransmitter systems;[53] these functional impairments involve impaired dopamine neurotransmission in the mesocorticolimbic projection and norepinephrine neurotransmission in the locus coeruleus and prefrontal cortex.[53] Psychostimulants like methylphenidate and amphetamine are effective in treating ADHD because they increase neurotransmitter activity in these systems.[25][53][54] Approximately 80% of those who use these stimulants see improvements in ADHD symptoms.[55] Children with ADHD who use stimulant medications generally have better relationships with peers and family members, perform better in school, are less distractible and impulsive, and have longer attention spans.[56][57] The Cochrane Collaboration's review[note 6] on the treatment of adult ADHD with pharmaceutical amphetamines stated that while these drugs improve short-term symptoms, they have higher discontinuation rates than non-stimulant medications due to their adverse side effects.[59] A Cochrane Collaboration review on the treatment of ADHD in children with tic disorders such as Tourette syndrome indicated that stimulants in general do not make tics worse, but high doses of dextroamphetamine could exacerbate tics in some individuals.[60]

Enhancing performance

In 2015, a systematic review and a meta-analysis of high quality clinical trials found that, when used at low (therapeutic) doses, amphetamine produces unambiguous improvements in cognition, including working memory, episodic memory, and inhibitory control, in normal healthy adults;[61][62] the cognition-enhancing effects of amphetamine are known to occur through its indirect activation of both dopamine receptor D1 and adrenoceptor A2 in the prefrontal cortex.[61] Therapeutic doses of amphetamine also enhance cortical network efficiency, an effect which mediates improvements in working memory in all individuals.[25][63] Amphetamine and other ADHD stimulants also improve task saliency (motivation to perform a task) and increase arousal (wakefulness), in turn promoting goal-directed behavior.[25][64][65] Stimulants such as amphetamine can improve performance on difficult and boring tasks and are used by some students as a study and test-taking aid.[25][64][66] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily used for performance enhancement rather than as recreational drugs.[67][68][69] However, high amphetamine doses that are above the therapeutic range can interfere with working memory and other aspects of cognitive control.[25][64]

Amphetamine is used by some athletes for its psychological and performance-enhancing effects, such as increased stamina and alertness;[26][38] however, its use is prohibited at sporting events regulated by collegiate, national, and international anti-doping agencies.[70][71] In healthy people at oral therapeutic doses, amphetamine has been shown to increase physical strength, acceleration, stamina, and endurance, while reducing reaction time.[26][72][73] Amphetamine improves stamina, endurance, and reaction time primarily through reuptake inhibition and effluxion of dopamine in the central nervous system.[72][73][74] At therapeutic doses, the adverse effects of amphetamine do not impede athletic performance;[26][72][73] however, at much higher doses, amphetamine can induce effects that severely impair performance, such as rapid muscle breakdown and elevated body temperature.[27][36][72]

Contraindications

According to the International Programme on Chemical Safety (IPCS) and United States Food and Drug Administration (USFDA),[note 7] amphetamine is contraindicated in people with a history of drug abuse, heart disease, severe agitation, or severe anxiety.[75][76] It is also contraindicated in people currently experiencing arteriosclerosis (hardening of the arteries), glaucoma (increased eye pressure), hyperthyroidism (excessive production of thyroid hormone), or hypertension.[75][76] People who have experienced allergic reactions to other stimulants in the past or who are taking monoamine oxidase inhibitors (MAOIs) are advised not to take amphetamine.[75][76] These agencies also state that anyone with anorexia nervosa, bipolar disorder, depression, hypertension, liver or kidney problems, mania, psychosis, Raynaud's phenomenon, seizures, thyroid problems, tics, or Tourette syndrome should monitor their symptoms while taking amphetamine.[75][76] Evidence from human studies indicates that therapeutic amphetamine use does not cause developmental abnormalities in the fetus or newborns (i.e., it is not a human teratogen), but amphetamine abuse does pose risks to the fetus.[76] Amphetamine has also been shown to pass into breast milk, so the IPCS and USFDA advise mothers to avoid breastfeeding when using it.[75][76] Due to the potential for reversible growth impairments,[note 8] the USFDA advises monitoring the height and weight of children and adolescents prescribed an amphetamine pharmaceutical.[75]

Side effects

The side effects of amphetamine are varied, and the amount of amphetamine used is the primary factor in determining the likelihood and severity of side effects.[27][36][38] Amphetamine products such as Adderall, Dexedrine, and their generic equivalents are currently approved by the USFDA for long-term therapeutic use.[35][36] Recreational use of amphetamine generally involves much larger doses, which have a greater risk of serious side effects than dosages used for therapeutic reasons.[38]

Physical

At normal therapeutic doses, the physical side effects of amphetamine vary widely by age and from person to person.[36] Cardiovascular side effects can include hypertension or hypotension from a vasovagal response, Raynaud's phenomenon (reduced blood flow to extremities), and tachycardia (increased heart rate).[36][38][77] Sexual side effects in males may include erectile dysfunction, frequent erections, or prolonged erections.[36] Abdominal side effects may include stomach pain, loss of appetite, nausea, and weight loss.[36] Other potential side effects include acne, blurred vision, dry mouth, excessive grinding of the teeth, profuse sweating, rhinitis medicamentosa (drug-induced nasal congestion), reduced seizure threshold, and tics (a type of movement disorder).[sources 5] Dangerous physical side effects are rare at typical pharmaceutical doses.[38]

Amphetamine stimulates the medullary respiratory centers, producing faster and deeper breaths.[38] In a normal person at therapeutic doses, this effect is usually not noticeable, but when respiration is already compromised, it may be evident.[38] Amphetamine also induces contraction in the urinary bladder sphincter, the muscle which controls urination, which can result in difficulty urinating. This effect can be useful in treating bed wetting and loss of bladder control.[38] The effects of amphetamine on the gastrointestinal tract are unpredictable.[38] If intestinal activity is high, amphetamine may reduce gastrointestinal motility (the rate at which content moves through the digestive system);[38] however, amphetamine may increase motility when the smooth muscle of the tract is relaxed.[38] Amphetamine also has a slight analgesic effect and can enhance the pain relieving effects of opioids.[38]

USFDA-commissioned studies from 2011 indicate that in children, young adults, and adults there is no association between serious adverse cardiovascular events (sudden death, heart attack, and stroke) and the medical use of amphetamine or other ADHD stimulants.[sources 6]

Psychological

Common psychological effects of therapeutic doses can include increased alertness, apprehension, concentration, decreased sense of fatigue, mood swings (elated mood followed by mildly depressed mood), increased initiative, insomnia or wakefulness, self-confidence, and sociability.[36][38] Less common side effects include anxiety, change in libido, grandiosity, irritability, repetitive or obsessive behaviors, and restlessness;[sources 7] these effects depend on the user's personality and current mental state.[38] Amphetamine psychosis (e.g., delusions and paranoia) can occur in heavy users.[27][36][39] Although very rare, this psychosis can also occur at therapeutic doses during long-term therapy.[27][36][40] According to the USFDA, "there is no systematic evidence" that stimulants produce aggressive behavior or hostility.[36]

Amphetamine has also been shown to produce a conditioned place preference in humans taking therapeutic doses,[59][84] meaning that individuals acquire a preference for spending time in places where they have previously used amphetamine.[84][85]

Overdose

An amphetamine overdose can lead to many different symptoms, but is rarely fatal with appropriate care.[76][86] The severity of overdose symptoms increases with dosage and decreases with drug tolerance to amphetamine.[38][76] Tolerant individuals have been known to take as much as 5 grams of amphetamine in a day, which is roughly 100 times the maximum daily therapeutic dose.[76] Symptoms of a moderate and extremely large overdose are listed below; fatal amphetamine poisoning usually also involves convulsions and coma.[27][38] In 2013, overdose on amphetamine, methamphetamine, and other compounds implicated in an "amphetamine use disorder" resulted in an estimated 3,788 deaths worldwide (3,425–4,145 deaths, 95% confidence).[note 9][87]

Pathological overactivation of the mesolimbic pathway, a dopamine pathway that connects the ventral tegmental area to the nucleus accumbens, plays a central role in amphetamine addiction.[88][89] Individuals who frequently overdose on amphetamine during recreational use have a high risk of developing an amphetamine addiction, since repeated overdoses gradually increase the level of accumbal ΔFosB, a "molecular switch" and "master control protein" for addiction.[90][91][92] Once nucleus accumbens ΔFosB is sufficiently overexpressed, it begins to increase the severity of addictive behavior (i.e., compulsive drug-seeking) with further increases in its expression.[90][93] While there are currently no effective drugs for treating amphetamine addiction, regularly engaging in sustained aerobic exercise appears to reduce the risk of developing such an addiction.[94] Sustained aerobic exercise on a regular basis also appears to be an effective treatment for amphetamine addiction;[93][94][95] exercise therapy improves clinical treatment outcomes and may be used as a combination therapy with cognitive behavioral therapy, which is currently the best clinical treatment available.[94][95][96]

Overdose symptoms by system
System Minor or moderate overdose[27][38][76] Severe overdose[sources 8]
Cardiovascular
Central nervous
system
Musculoskeletal
Respiratory
  • Rapid breathing
Urinary
Other

Addiction

Addiction glossary[85][91][98]
addiction – a state characterized by compulsive engagement in rewarding stimuli despite adverse consequences
reinforcing stimuli – stimuli that increase the probability of repeating behaviors paired with them
rewarding stimuli – stimuli that the brain interprets as intrinsically positive or as something to be approached
addictive drug – a drug that is both rewarding and reinforcing
addictive behavior – a behavior that is both rewarding and reinforcing
sensitization – an amplified response to a stimulus resulting from repeated exposure to it
drug tolerance – the diminishing effect of a drug resulting from repeated administration at a given dose
drug sensitization or reverse tolerance – the escalating effect of a drug resulting from repeated administration at a given dose
dependence – an adaptive state associated with a withdrawal syndrome upon cessation of repeated exposure to a stimulus (e.g., drug intake)
physical dependence – dependence that involves persistent physical–somatic withdrawal symptoms (e.g., fatigue and delirium tremens)
psychological dependence – dependence that involves emotional–motivational withdrawal symptoms (e.g., dysphoria and anhedonia)
(edit | history)
Signaling cascade in the nucleus accumbens that results in amphetamine addiction
v · t · e
This diagram depicts the signaling events in the brain's reward center that are induced by chronic high-dose exposure to psychostimulants that increase the concentration of synaptic dopamine, like amphetamine, methamphetamine, and phenethylamine. Following presynaptic dopamine and glutamate co-release by such psychostimulants,[99][100] postsynaptic receptors for these neurotransmitters trigger internal signaling events through a cAMP pathway and calcium-dependent pathway that ultimately result in increased CREB phosphorylation.[88][101] Phosphorylated CREB increases levels of ΔFosB, which in turn represses the c-fos gene with the help of corepressors;[101] c-fos repression acts as a molecular switch that enables the accumulation of ΔFosB in the neuron.[102] A highly stable (phosphorylated) form of ΔFosB, one that persists in neurons for one or two months, slowly accumulates following repeated exposure to stimulants through this process.[92][103] ΔFosB functions as "one of the master control proteins" that produces addiction-related structural changes in the brain, and upon sufficient accumulation, with the help of its downstream targets (e.g., nuclear factor kappa B), it induces an addictive state.[92][103] Desc-20.png

Addiction is a serious risk with heavy recreational amphetamine use but is unlikely to arise from typical medical use at therapeutic doses.[38][41][42] Drug tolerance develops rapidly in amphetamine abuse (i.e., a recreational amphetamine overdose), so periods of extended use require increasingly larger doses of the drug in order to achieve the same effect.[104][105]

Biomolecular mechanisms

Current models of addiction from chronic drug use involve alterations in gene expression in certain parts of the brain, particularly the nucleus accumbens.[106][107][108] The most important transcription factors[note 10] that produce these alterations are ΔFosB, cAMP response element binding protein (CREB), and nuclear factor kappa B (NFκB).[107] ΔFosB plays a crucial role in the development of drug addictions, since its overexpression in D1-type medium spiny neurons in the nucleus accumbens is necessary and sufficient[note 11] for most of the behavioral and neural adaptations that arise from addiction.[90][91][107] Once ΔFosB is sufficiently overexpressed, it induces an addictive state that becomes increasingly more severe with further increases in ΔFosB expression.[90][91] It has been implicated in addictions to alcohol, cannabinoids, cocaine, methylphenidate, nicotine, opioids, phencyclidine, propofol, and substituted amphetamines, among others.[sources 9]

ΔJunD, a transcription factor, and G9a, a histone methyltransferase enzyme, both directly oppose the induction of ΔFosB in the nucleus accumbens (i.e., they oppose increases in its expression).[91][107][112] Sufficiently overexpressing ΔJunD in the nucleus accumbens with viral vectors can completely block many of the neural and behavioral alterations seen in chronic drug abuse (i.e., the alterations mediated by ΔFosB).[107] ΔFosB also plays an important role in regulating behavioral responses to natural rewards, such as palatable food, sex, and exercise.[93][107][113] Since both natural rewards and addictive drugs induce expression of ΔFosB (i.e., they cause the brain to produce more of it), chronic acquisition of these rewards can result in a similar pathological state of addiction.[93][107] Consequently, ΔFosB is the most significant factor involved in both amphetamine addiction and amphetamine-induced sex addictions, which are compulsive sexual behaviors that result from excessive sexual activity and amphetamine use.[93][114] These sex addictions are associated with a dopamine dysregulation syndrome which occurs in some patients taking dopaminergic drugs.[93][113][114]

The effects of amphetamine on gene regulation are both dose- and route-dependent.[108] Most of the research on gene regulation and addiction is based upon animal studies with intravenous amphetamine administration at very high doses.[108] The few studies that have used equivalent (weight-adjusted) human therapeutic doses and oral administration show that these changes, if they occur, are relatively minor.[108] This suggests that medical use of amphetamine does not significantly affect gene regulation.[108]

Pharmacological treatments

As of May 2014, there is no effective pharmacotherapy for amphetamine addiction.[115][116][117] Amphetamine addiction is largely mediated through increased activation of dopamine receptors and co-localized NMDA receptors[note 12] in the nucleus accumbens;[89] magnesium ions inhibit NMDA receptors by blocking the receptor calcium channel.[89][118] One review suggested that, based upon animal testing, pathological (addiction-inducing) amphetamine use significantly reduces the level of intracellular magnesium throughout the brain.[89] Supplemental magnesium[note 13] treatment has been shown to reduce amphetamine self-administration (doses given to oneself) in humans, but it is not an effective monotherapy for amphetamine addiction.[89]

Behavioral treatments

Cognitive behavioral therapy is currently the most effective clinical treatment for psychostimulant addiction.[96] Additionally, research on the neurobiological effects of physical exercise suggests that daily aerobic exercise, especially endurance exercise (e.g., marathon running), prevents the development of drug addiction and is an effective adjunct therapy (i.e., a supplemental treatment) for amphetamine addiction.[93][94][95] Exercise leads to better treatment outcomes when used as an adjunct treatment, particularly for psychostimulant addictions.[94][95] In particular, aerobic exercise decreases psychostimulant self-administration, reduces the reinstatement (i.e., relapse) of drug-seeking, and induces increased dopamine receptor D2 (DRD2) density in the striatum.[93] This is the opposite of pathological stimulant use, which induces decreased striatal DRD2 density.[93]

Summary of addiction-related plasticity
Form of neural or behavioral plasticity Type of reinforcer Sources
Opiates Psycho­stimulants High fat or sugar food Sexual reward Physical exercise
(aerobic)
Environmental
enrichment
ΔFosB expression in
nucleus accumbens D1-type MSNs
[93]
Behavioral plasticity
Escalation of intake Yes Yes Yes [93]
Psychostimulant
cross-sensitization
Yes Not applicable Yes Yes Attenuated Attenuated [93]
Psychostimulant
self-administration
[93]
Psychostimulant
conditioned place preference
[93]
Reinstatement of drug-seeking behavior [93]
Neurochemical plasticity
CREB phosphorylation
in the nucleus accumbens
[93]
Sensitized dopamine response
in the nucleus accumbens
No Yes No Yes [93]
Altered striatal dopamine signaling DRD2, ↑DRD3 DRD1, ↓DRD2, ↑DRD3 DRD1, ↓DRD2, ↑DRD3 DRD2 DRD2 [93]
Altered striatal opioid signaling μ-opioid receptors μ-opioid receptors
κ-opioid receptors
μ-opioid receptors μ-opioid receptors No change No change [93]
Changes in striatal opioid peptides dynorphin dynorphin enkephalin dynorphin dynorphin [93]
Mesocorticolimbic synaptic plasticity
Number of dendrites in the nucleus accumbens [93]
Dendritic spine density in
the nucleus accumbens
[93]

Dependence and withdrawal

According to another Cochrane Collaboration review on withdrawal in individuals who compulsively use amphetamine and methamphetamine, "when chronic heavy users abruptly discontinue amphetamine use, many report a time-limited withdrawal syndrome that occurs within 24 hours of their last dose."[119] This review noted that withdrawal symptoms in chronic, high-dose users are frequent, occurring in up to 87.6% of cases, and persist for three to four weeks with a marked "crash" phase occurring during the first week.[119] Amphetamine withdrawal symptoms can include anxiety, drug craving, depressed mood, fatigue, increased appetite, increased movement or decreased movement, lack of motivation, sleeplessness or sleepiness, and lucid dreams.[119] The review indicated that withdrawal symptoms are associated with the degree of dependence, suggesting that therapeutic use would result in far milder discontinuation symptoms.[119] Manufacturer prescribing information does not indicate the presence of withdrawal symptoms following discontinuation of amphetamine use after an extended period at therapeutic doses.[120][121][122]

Toxicity and psychosis

In rodents and primates, sufficiently high doses of amphetamine cause dopaminergic neurotoxicity, or damage to dopamine neurons, which is characterized by reduced transporter and receptor function.[123] There is no evidence that amphetamine is directly neurotoxic in humans.[124][125] However, large doses of amphetamine may cause indirect neurotoxicity as a result of increased oxidative stress from reactive oxygen species and autoxidation of dopamine.[45][126][127]

A severe amphetamine overdose can result in a stimulant psychosis that may involve a variety of symptoms, such as paranoia and delusions.[39] A Cochrane Collaboration review on treatment for amphetamine, dextroamphetamine, and methamphetamine psychosis states that about 5–15% of users fail to recover completely.[39][128] According to the same review, there is at least one trial that shows antipsychotic medications effectively resolve the symptoms of acute amphetamine psychosis.[39] Psychosis very rarely arises from therapeutic use.[40][75]

Interactions

Many types of substances are known to interact with amphetamine, resulting in altered drug action or metabolism of amphetamine, the interacting substance, or both.[3][129] Inhibitors of the enzymes that metabolize amphetamine (e.g., CYP2D6 and flavin-containing monooxygenase 3) will prolong its elimination half-life, meaning that its effects will last longer.[7][129] Amphetamine also interacts with MAOIs, particularly monoamine oxidase A inhibitors, since both MAOIs and amphetamine increase plasma catecholamines (i.e., norepinephrine and dopamine);[129] therefore, concurrent use of both is dangerous.[129] Amphetamine modulates the activity of most psychoactive drugs. In particular, amphetamine may decrease the effects of sedatives and depressants and increase the effects of stimulants and antidepressants.[129] Amphetamine may also decrease the effects of antihypertensives and antipsychotics due to its effects on blood pressure and dopamine respectively.[129] In general, there is no significant interaction when consuming amphetamine with food, but the pH of gastrointestinal content and urine affects the absorption and excretion of amphetamine, respectively.[129] Acidic substances reduce the absorption of amphetamine and increase urinary excretion, and alkaline substances do the opposite.[129] Due to the effect pH has on absorption, amphetamine also interacts with gastric acid reducers such as proton pump inhibitors and H2 antihistamines, which increase gastrointestinal pH (i.e., make it less acidic).[129]

Pharmacology

Pharmacodynamics

For a simpler and less technical explanation of amphetamine's mechanism of action, see Adderall#Mechanism of action.
Pharmacodynamics of amphetamine enantiomers in a dopamine neuron
v · t · e
A pharmacodynamic model of amphetamine and TAAR1
via AADC
Amphetamine enters the presynaptic neuron across the neuronal membrane or through DAT.[37] Once inside, it binds to TAAR1 or enters synaptic vesicles through VMAT2.[37][130] When amphetamine enters the synaptic vesicles through VMAT2, dopamine is released into the cytosol (yellow-orange area).[130] When amphetamine binds to TAAR1, it reduces dopamine receptor firing rate via potassium channels and triggers protein kinase A (PKA) and protein kinase C (PKC) signaling, resulting in DAT phosphorylation.[37][131][132] PKA-phosphorylation causes DAT to withdraw into the presynaptic neuron (internalize) and cease transport.[37] PKC-phosphorylated DAT may either operate in reverse or, like PKA-phosphorylated DAT, internalize and cease transport.[37] Amphetamine is also known to increase intracellular calcium, a known effect of TAAR1 activation, which is associated with DAT phosphorylation through a CAMK-dependent pathway, in turn producing dopamine efflux.[133][134][135]

Amphetamine exerts its behavioral effects by altering the use of monoamines as neuronal signals in the brain, primarily in catecholamine neurons in the reward and executive function pathways of the brain.[37][54] The concentrations of the main neurotransmitters involved in reward circuitry and executive functioning, dopamine and norepinephrine, increase dramatically in a dose-dependent manner by amphetamine due to its effects on monoamine transporters.[37][54][130] The reinforcing and task saliency effects of amphetamine are mostly due to enhanced dopaminergic activity in the mesolimbic pathway.[25]

Amphetamine has been identified as a potent full agonist of trace amine-associated receptor 1 (TAAR1), a Gs-coupled and Gq-coupled G protein-coupled receptor (GPCR) discovered in 2001, which is important for regulation of brain monoamines.[37][133] Activation of TAAR1 increases cAMP production via adenylyl cyclase activation and inhibits monoamine transporter function.[37][136] Monoamine autoreceptors (e.g., D2 short, presynaptic α2, and presynaptic 5-HT1A) have the opposite effect of TAAR1, and together these receptors provide a regulatory system for monoamines.[37] Notably, amphetamine and trace amines bind to TAAR1, but not monoamine autoreceptors.[37] Imaging studies indicate that monoamine reuptake inhibition by amphetamine and trace amines is site specific and depends upon the presence of TAAR1 co-localization in the associated monoamine neurons.[37] As of 2010, co-localization of TAAR1 and the dopamine transporter (DAT) has been visualized in rhesus monkeys, but co-localization of TAAR1 with the norepinephrine transporter (NET) and the serotonin transporter (SERT) has only been evidenced by messenger RNA (mRNA) expression.[37]

In addition to the neuronal monoamine transporters, amphetamine also inhibits vesicular monoamine transporter 2 (VMAT2), SLC1A1, SLC22A3, and SLC22A5.[sources 10] SLC1A1 is excitatory amino acid transporter 3 (EAAT3), a glutamate transporter located in neurons, SLC22A3 is an extraneuronal monoamine transporter that is present in astrocytes and SLC22A5 is a high-affinity carnitine transporter.[sources 10] Amphetamine is known to strongly induce cocaine- and amphetamine-regulated transcript (CART) gene expression,[141][142] a neuropeptide involved in feeding behavior, stress, and reward, which induces observable increases in neuronal development and survival in vitro.[142][143][144] The CART receptor has yet to be identified, but there is significant evidence that CART binds to a unique Gi/Go-coupled GPCR.[144][145] Amphetamine also inhibits monoamine oxidase at very high doses, resulting in less dopamine and phenethylamine metabolism and consequently higher concentrations of synaptic monoamines.[18][146] In humans, the only post-synaptic receptor at which amphetamine is known to bind is the 5-HT1A receptor, where it acts as an agonist with micromolar affinity.[147][148]

The full profile of amphetamine's short-term drug effects is mostly derived through increased cellular communication or neurotransmission of dopamine,[37] serotonin,[37] norepinephrine,[37] epinephrine,[130] histamine,[130] CART peptides,[141][142] acetylcholine,[149][150] endogenous opioids,[151][152] and glutamate,[99][153] which it effects through interactions with CART, 5-HT1A, EAAT3, TAAR1, and VMAT2.[sources 11]

Dextroamphetamine is a more potent agonist of TAAR1 than levoamphetamine.[154] Consequently, dextroamphetamine produces greater CNS stimulation than levoamphetamine, roughly three to four times more, but levoamphetamine has slightly stronger cardiovascular and peripheral effects.[38][154]

Dopamine

In certain brain regions, amphetamine increases the concentration of dopamine in the synaptic cleft.[37] Amphetamine can enter the presynaptic neuron either through DAT or by diffusing across the neuronal membrane directly.[37] As a consequence of DAT uptake, amphetamine produces competitive reuptake inhibition at the transporter.[37] Upon entering the presynaptic neuron, amphetamine activates TAAR1 which, through protein kinase A (PKA) and protein kinase C (PKC) signaling, causes DAT phosphorylation.[37] Phosphorylation by either protein kinase can result in DAT internalization (non-competitive reuptake inhibition), but PKC-mediated phosphorylation alone induces reverse transporter function (dopamine efflux).[37][155] Amphetamine is also known to increase intracellular calcium, a known effect of TAAR1 activation, which is associated with DAT phosphorylation through a Ca2+/calmodulin-dependent protein kinase (CAMK)-dependent pathway, in turn producing dopamine efflux.[133][134][135] Through direct activation of G protein-coupled inwardly-rectifying potassium channels and an indirect increase in dopamine autoreceptor signaling, TAAR1 reduces the firing rate of postsynaptic dopamine receptors, preventing a hyper-dopaminergic state.[131][132][156]

Amphetamine is also a substrate for the presynaptic vesicular monoamine transporter, VMAT2.[130] Following amphetamine uptake at VMAT2, the synaptic vesicle releases dopamine molecules into the cytosol in exchange.[130] Subsequently, the cytosolic dopamine molecules exit the presynaptic neuron via reverse transport at DAT.[37][130]

Norepinephrine

Similar to dopamine, amphetamine dose-dependently increases the level of synaptic norepinephrine, the direct precursor of epinephrine.[43][54] Based upon neuronal TAAR1 mRNA expression, amphetamine is thought to affect norepinephrine analogously to dopamine.[37][130][155] In other words, amphetamine induces TAAR1-mediated efflux and non-competitive reuptake inhibition at phosphorylated NET, competitive NET reuptake inhibition, and norepinephrine release from VMAT2.[37][130]

Serotonin

Amphetamine exerts analogous, yet less pronounced, effects on serotonin as on dopamine and norepinephrine.[37][54] Amphetamine affects serotonin via VMAT2 and, like norepinephrine, is thought to phosphorylate SERT via TAAR1.[37][130] Like dopamine, amphetamine has low, micromolar affinity at the human 5-HT1A receptor.[147][148]

Other neurotransmitters and peptides

Amphetamine has no direct effect on acetylcholine neurotransmission, but several studies have noted that acetylcholine release increases after its use.[149][150] In lab animals, amphetamine increases acetylcholine levels in certain brain regions as a downstream effect.[149] In humans, a similar phenomenon occurs via the ghrelin-mediated cholinergic–dopaminergic reward link in the ventral tegmental area.[150] Acute amphetamine administration in humans also increases endogenous opioid release in several brain structures in the reward system.[151][152]

Extracellular levels of glutamate, the primary excitatory neurotransmitter in the brain, have been shown to increase upon exposure to amphetamine.[99][153] This cotransmission effect was found in the mesolimbic pathway, an area of the brain implicated in reward, where amphetamine is known to affect dopamine neurotransmission.[99][153] Amphetamine also induces effluxion of histamine from synaptic vesicles in CNS mast cells and histaminergic neurons through VMAT2.[130]

Pharmacokinetics

The oral bioavailability of amphetamine varies with gastrointestinal pH;[129] it is well absorbed from the gut, and bioavailability is typically over 75% for dextroamphetamine.[1] Amphetamine is a weak base with a pKa of 9–10;[3] consequently, when the pH is basic, more of the drug is in its lipid soluble free base form, and more is absorbed through the lipid-rich cell membranes of the gut epithelium.[3][129] Conversely, an acidic pH means the drug is predominantly in a water-soluble cationic (salt) form, and less is absorbed.[3] Approximately 15–40% of amphetamine circulating in the bloodstream is bound to plasma proteins.[2]

The half-life of amphetamine enantiomers differ and vary with urine pH.[3] At normal urine pH, the half-lives of dextroamphetamine and levoamphetamine are 9–11 hours and 11–14 hours, respectively.[3] An acidic diet will reduce the enantiomer half-lives to 8–11 hours; an alkaline diet will increase the range to 16–31 hours.[11][16] The immediate-release and extended release variants of salts of both isomers reach peak plasma concentrations at 3 hours and 7 hours post-dose respectively.[3] Amphetamine is eliminated via the kidneys, with 30–40% of the drug being excreted unchanged at normal urinary pH.[3] When the urinary pH is basic, amphetamine is in its free base form, so less is excreted.[3] When urine pH is abnormal, the urinary recovery of amphetamine may range from a low of 1% to a high of 75%, depending mostly upon whether urine is too basic or acidic, respectively.[3] Amphetamine is usually eliminated within two days of the last oral dose.[11] Apparent half-life and duration of effect increase with repeated use and accumulation of the drug.[157]

The prodrug lisdexamfetamine is not as sensitive to pH as amphetamine when being absorbed in the gastrointestinal tract;[158] following absorption into the blood stream, it is converted by red blood cell-associated enzymes to dextroamphetamine via hydrolysis.[158] The elimination half-life of lisdexamfetamine is generally less than one hour.[158]

CYP2D6, dopamine β-hydroxylase, flavin-containing monooxygenase 3, butyrate-CoA ligase, and glycine N-acyltransferase are the enzymes known to metabolize amphetamine or its metabolites in humans.[sources 12] Amphetamine has a variety of excreted metabolic products, including 4-hydroxyamphetamine, 4-hydroxynorephedrine, 4-hydroxyphenylacetone, benzoic acid, hippuric acid, norephedrine, and phenylacetone.[3][11][12] Among these metabolites, the active sympathomimetics are 4‑hydroxyamphetamine,[159] 4‑hydroxynorephedrine,[160] and norephedrine.[161] The main metabolic pathways involve aromatic para-hydroxylation, aliphatic alpha- and beta-hydroxylation, N-oxidation, N-dealkylation, and deamination.[3][11] The known pathways and detectable metabolites in humans include the following:[3][7][12]

Metabolic pathways of amphetamine
Graphic of several routes of amphetamine metabolism
Amphetamine
Para-
Hydroxylation
Para-
Hydroxylation
Para-
Hydroxylation
Beta-
Hydroxylation
Beta-
Hydroxylation
Oxidative
Deamination
Oxidation
Glycine
Conjugation
The primary active metabolites of amphetamine are 4-hydroxyamphetamine and norephedrine;[12] at normal urine pH, about 30–40% of amphetamine is excreted unchanged and roughly 50% is excreted as the inactive metabolites (bottom row).[3] The remaining 10–20% is excreted as the active metabolites.[3] Benzoic acid is metabolized by butyrate-CoA ligase into an intermediate product, benzoyl-CoA,[9] which is then metabolized by glycine N-acyltransferase into hippuric acid.[10]

Related endogenous compounds

For more details on related compounds, see Trace amines.

Amphetamine has a very similar structure and function to the endogenous trace amines, which are naturally occurring neurotransmitter molecules produced in the human body and brain.[37][43] Among this group, the most closely related compounds are phenethylamine, the parent compound of amphetamine, and N-methylphenethylamine, an isomer of amphetamine (i.e., it has an identical molecular formula).[37][43][162] In humans, phenethylamine is produced directly from L-phenylalanine by the aromatic amino acid decarboxylase (AADC) enzyme, which converts L-DOPA into dopamine as well.[43][162] In turn, N‑methylphenethylamine is metabolized from phenethylamine by phenylethanolamine N-methyltransferase, the same enzyme that metabolizes norepinephrine into epinephrine.[43][162] Like amphetamine, both phenethylamine and N‑methylphenethylamine regulate monoamine neurotransmission via TAAR1;[37][162] unlike amphetamine, both of these substances are broken down by monoamine oxidase B, and therefore have a shorter half-life than amphetamine.[43][162]

Physical and chemical properties

Racemic amphetamine
The skeletal structures of L-amph and D-amph
An image of amphetamine free base
A vial of the colorless amphetamine free base
An image of phenyl-2-nitropropene and amphetamine hydrochloride
Amphetamine hydrochloride (left bowl)
Phenyl-2-nitropropene (right cups)

Amphetamine is a methyl homolog of the mammalian neurotransmitter phenethylamine with the chemical formula C9H13N. The carbon atom adjacent to the primary amine is a stereogenic center, and amphetamine is composed of a racemic 1:1 mixture of two enantiomeric mirror images.[21] This racemic mixture can be separated into its optical isomers:[note 14] levoamphetamine and dextroamphetamine.[21] Physically, at room temperature, the pure free base of amphetamine is a mobile, colorless, and volatile liquid with a characteristically strong amine odor, and acrid, burning taste.[20] Frequently prepared solid salts of amphetamine include amphetamine aspartate,[27] hydrochloride,[163] phosphate,[164] saccharate,[27] and sulfate,[27] the last of which is the most common amphetamine salt.[44] Amphetamine is also the parent compound of its own structural class, which includes a number of psychoactive derivatives.[21] In organic chemistry, amphetamine is an excellent chiral ligand for the stereoselective synthesis of 1,1'-bi-2-naphthol.[165]

Derivatives

For a more comprehensive list, see Substituted amphetamine.

Amphetamine derivatives, often referred to as "amphetamines" or "substituted amphetamines", are a broad range of chemicals that contain amphetamine as a "backbone".[166][167] The class includes stimulants like methamphetamine, serotonergic empathogens like MDMA, and decongestants like ephedrine, among other subgroups.[166][167] This class of chemicals is sometimes referred to collectively as the "amphetamine family."[168]

Synthesis

For more details on illicit amphetamine synthesis, see Illegal synthesis of substituted amphetamines.

Since the first preparation was reported in 1887,[169] numerous synthetic routes to amphetamine have been developed.[170][171] Many of these syntheses are based on classic organic reactions. One such example is the Friedel–Crafts alkylation of chlorobenzene by allyl chloride to yield beta chloropropylbenzene which is then reacted with ammonia to produce racemic amphetamine (method 1).[172] Another example employs the Ritter reaction (method 2). In this route, allylbenzene is reacted acetonitrile in sulfuric acid to yield an organosulfate which in turn is treated with sodium hydroxide to give amphetamine via an acetamide intermediate.[173][174] A third route starts with ethyl 3-oxobutanoate which through a double alkylation with methyl iodide followed by benzyl chloride can be converted into 2-methyl-3-phenyl-propanoic acid. This synthetic intermediate can be transformed into amphetamine using either a Hofmann or Curtius rearrangement (method 3).[175]

A significant number of amphetamine syntheses feature a reduction of a nitro, imine, oxime or other nitrogen-containing functional groups.[170] In one such example, a Knoevenagel condensation of benzaldehyde with nitroethane yields phenyl-2-nitropropene. The double bond and nitro group of this intermediate is reduced using either catalytic hydrogenation or by treatment with lithium aluminium hydride (method 4).[176][177] Another method is the reaction of phenylacetone with ammonia, producing an imine intermediate that is reduced to the primary amine using hydrogen over a palladium catalyst or lithium aluminum hydride (method 5).[177]

The most common route of both legal and illicit amphetamine synthesis employs a non-metal reduction known as the Leuckart reaction (method 6).[44][177] In the first step, a reaction between phenylacetone and formamide, either using additional formic acid or formamide itself as a reducing agent, yields N-formylamphetamine. This intermediate is then hydrolyzed using hydrochloric acid, and subsequently basified, extracted with organic solvent, concentrated, and distilled to yield the free base. The free base is then dissolved in an organic solvent, sulfuric acid added, and amphetamine precipitates out as the sulfate salt.[177][178]

A number of chiral resolutions have been developed to separate the two enantiomers of amphetamine.[171] For example, racemic amphetamine can be treated with d-tartaric acid to form a diastereoisomeric salt which is fractionally crystallized to yield dextroamphetamine.[179] Chiral resolution remains the most economical method for obtaining optically pure amphetamine on a large scale.[180] In addition, several enantioselective syntheses of amphetamine have been developed. In one example, optically pure (R)-1-phenyl-ethanamine is condensed with phenylacetone to yield a chiral Schiff base. In the key step, this intermediate is reduced by catalytic hydrogenation with a transfer of chirality to the carbon atom alpha to the amino group. Cleavage of the benzylic amine bond by hydrogenation yields optically pure dextroamphetamine.[180]

Amphetamine synthetic routes
Diagram of amphetamine synthesis by Friedel–Crafts alkylation
Method 1: Synthesis by Friedel–Crafts alkylation
Diagram of amphetamine via Ritter synthesis
Method 2: Ritter synthesis
Diagram of amphetamine synthesis via Hofmann and Curtius rearrangements
Method 3: Synthesis via Hofmann and Curtius rearrangements
Diagram of amphetamine synthesis by Knoevenagel condensation
Method 4: Synthesis by Knoevenagel condensation
Diagram of amphetamine synthesis from phenylacetone and ammonia
Method 5: Synthesis using phenylacetone and ammonia
 
Diagram of amphetamine synthesis by the Leuckart reaction
Method 6: Synthesis by the Leuckart reaction
 
Diagram of a chiral resolution of racemic amphetamine and a stereoselective synthesis
Top: Chiral resolution of amphetamine
Bottom: Stereoselective synthesis of amphetamine

Detection in body fluids

Amphetamine is frequently measured in urine or blood as part of a drug test for sports, employment, poisoning diagnostics, and forensics.[sources 13] Techniques such as immunoassay, which is the most common form of amphetamine test, may cross-react with a number of sympathomimetic drugs.[184] Chromatographic methods specific for amphetamine are employed to prevent false positive results.[185] Chiral separation techniques may be employed to help distinguish the source of the drug, whether prescription amphetamine, prescription amphetamine prodrugs, (e.g., selegiline), over-the-counter drug products (e.g., the American version of Vicks VapoInhaler,[186] which contains levomethamphetamine) or illicitly obtained substituted amphetamines.[185][187][188] Several prescription drugs produce amphetamine as a metabolite, including benzphetamine, clobenzorex, famprofazone, fenproporex, lisdexamfetamine, mesocarb, methamphetamine, prenylamine, and selegiline, among others.[24][189][190] These compounds may produce positive results for amphetamine on drug tests.[189][190] Amphetamine is generally only detectable by a standard drug test for approximately 24 hours, although a high dose may be detectable for two to four days.[184]

For the assays, a study noted that an enzyme multiplied immunoassay technique (EMIT) assay for amphetamine and methamphetamine may produce more false positives than liquid chromatography–tandem mass spectrometry.[187] Gas chromatography–mass spectrometry (GC–MS) of amphetamine and methamphetamine with the derivatizing agent (S)-(−)-trifluoroacetylprolyl chloride allows for the detection of methamphetamine in urine.[185] GC–MS of amphetamine and methamphetamine with the chiral derivatizing agent Mosher's acid chloride allows for the detection of both dextroamphetamine and dextromethamphetamine in urine.[185] Hence, the latter method may be used on samples that test positive using other methods to help distinguish between the various sources of the drug.[185]

History, society, and culture

Global estimates of illicit drug users in 2012
(in millions of users)[191]
Substance Mean
estimate
Low
estimate
High
estimate
Cannabis 177.63 125.30 227.27
Cocaine 17.24 13.99 20.92
MDMA 18.75 9.4 28.24
Opiates 16.37 12.80 20.23
Opioids 33.04 28.63 38.16
Substituted
amphetamines
34.40 13.94 54.81

Amphetamine was first synthesized in 1887 in Germany by Romanian chemist Lazăr Edeleanu who named it phenylisopropylamine;[169][192][193] its stimulant effects remained unknown until 1927, when it was independently resynthesized by Gordon Alles and reported to have sympathomimetic properties.[193] Amphetamine had no pharmacological use until 1934, when Smith, Kline and French began selling it as an inhaler under the trade name Benzedrine as a decongestant.[28] During World War II, amphetamine and methamphetamine were used extensively by both the Allied and Axis forces for their stimulant and performance-enhancing effects.[169][194][195] As the addictive properties of the drug became known, governments began to place strict controls on the sale of amphetamine.[169] For example, during the early 1970s in the United States, amphetamine became a schedule II controlled substance under the Controlled Substances Act.[196] In spite of strict government controls, amphetamine has been used legally or illicitly by people from a variety of backgrounds, including authors,[197] musicians,[198] mathematicians,[199] and athletes.[26]

Amphetamine is still illegally synthesized today in clandestine labs and sold on the black market, primarily in European countries.[191] Among European Union (EU) member states, 1.2 million young adults used illicit amphetamine or methamphetamine in 2013.[200] During 2012, approximately 5.9 metric tons of illicit amphetamine were seized within EU member states;[200] the "street price" of illicit amphetamine within the EU ranged from €6–38 per gram during the same period.[200] Outside Europe, the illicit market for amphetamine is much smaller than the market for methamphetamine and MDMA.[191]

Legal status

As a result of the United Nations 1971 Convention on Psychotropic Substances, amphetamine became a schedule II controlled substance, as defined in the treaty, in all (183) state parties.[29] Consequently, it is heavily regulated in most countries.[201][202] Some countries, such as South Korea and Japan, have banned substituted amphetamines even for medical use.[203][204] In other nations, such as Canada (schedule I drug),[205] the Netherlands (List I drug),[206] (Dutch) the United States (schedule II drug),[27] Thailand (category 1 narcotic),[207] and United Kingdom (class B drug),[208] amphetamine is in a restrictive national drug schedule that allows for its use as a medical treatment.[191][30]

Pharmaceutical products

The only currently prescribed amphetamine formulation that contains both enantiomers is Adderall.[note 3][21][24] Amphetamine is also prescribed in enantiopure and prodrug form as dextroamphetamine and lisdexamfetamine respectively.[35][209] Lisdexamfetamine is structurally different from amphetamine, and is inactive until it metabolizes into dextroamphetamine.[209] The free base of racemic amphetamine was previously available as Benzedrine, Psychedrine, and Sympatedrine.[21][24] Levoamphetamine was previously available as Cydril.[24] All current amphetamine pharmaceuticals are salts due to the comparatively high volatility of the free base.[24][35][44] Some of the current brands and their generic equivalents are listed below.

Amphetamine pharmaceuticals
Brand
name
United States
Adopted Name
(D:L) ratio
of salts
Dosage
form
Source
Adderall 3:1 tablet [24][35]
Adderall XR 3:1 capsule [24][35]
Dexedrine dextroamphetamine sulfate 1:0 capsule [24][35]
ProCentra dextroamphetamine sulfate 1:0 liquid [35]
Vyvanse lisdexamfetamine dimesylate 1:0 capsule [24][209]
Zenzedi dextroamphetamine sulfate 1:0 tablet [35]
 
An image of the lisdexamphetamine compound
The skeletal structure of lisdexamfetamine

Notes

  1. ^ Synonyms and alternate spellings include: 1-phenylpropan-2-amine (IUPAC name), α-methylbenzeneethanamine, α-methylphenethylamine, amfetamine (International Nonproprietary Name [INN]), β-phenylisopropylamine, desoxynorephedrine, and speed.[18][21][22]
  2. ^ Enantiomers are molecules that are mirror images of one another; they are structurally identical, but of the opposite orientation.[23]
    Levoamphetamine and dextroamphetamine are also known as L-amph or levamfetamine (INN) and D-amph or dexamfetamine (INN) respectively.[18]
  3. ^ a b "Adderall" is a brand name as opposed to a nonproprietary name; because the latter ("dextroamphetamine sulfate, dextroamphetamine saccharate, amphetamine sulfate, and amphetamine aspartate"[35]) is excessively long, this article exclusively refers to this amphetamine mixture by the brand name.
  4. ^ Due to confusion that may arise from use of the plural form, this article will only use the terms "amphetamine" and "amphetamines" to refer to racemic amphetamine, levoamphetamine, and dextroamphetamine and reserve the term "substituted amphetamines" for the class.
  5. ^ Again, due to confusion that may arise from use of the plural form, this article will only use "phenethylamine" and "phenethylamines" to refer to the compound itself and reserve the term "substituted phenethylamines" for the class.
  6. ^ Cochrane Collaboration reviews are high quality meta-analytic systematic reviews of randomized controlled trials.[58]
  7. ^ The statements supported by the USFDA come from prescribing information, which is the copyrighted intellectual property of the manufacturer and approved by the USFDA.
  8. ^ In individuals who experience sub-normal height and weight gains, a rebound to normal levels is expected to occur if stimulant therapy is briefly interrupted.[50][52][77] The average reduction in final adult height from continuous stimulant therapy over a 3 year period is 2 cm.[77]
  9. ^ The 95% confidence interval indicates that there is a 95% probability that the true number of deaths lies between 3,425 and 4,145.
  10. ^ Transcription factors are proteins that increase or decrease the expression of specific genes.[109]
  11. ^ In simpler terms, this necessary and sufficient relationship means that ΔFosB overexpression in the nucleus accumbens and addiction-related behavioral and neural adaptations always occur together and never occur alone.
  12. ^ NMDA receptors are voltage-dependent ligand-gated ion channels that requires simultaneous binding of glutamate and a co-agonist (D-serine or glycine) to open the ion channel.[118]
  13. ^ The review indicated that magnesium L-aspartate and magnesium chloride produce significant changes in addictive behavior;[89] other forms of magnesium were not mentioned.
  14. ^ Enantiomers are molecules that are mirror images of one another; they are structurally identical, but of the opposite orientation.[23]
Image legend
  1. ^

Reference notes

  1. ^ [24][25][26][27][28][29][30][31][32][33][34]
  2. ^ [15][24][25][26][28][31][36][37]
  3. ^ [25][27][38][39][40][41][42]
  4. ^ [43][44]
  5. ^ [36][38][77][78]
  6. ^ [79][80][81][82]
  7. ^ [31][36][38][83]
  8. ^ [22][27][38][86][97]
  9. ^ [90][93][107][110][111]
  10. ^ a b [130][134][137][138][139][140]
  11. ^ [37][130][137][141][147]
  12. ^ [3][4][5][6][7][8][9][10]
  13. ^ [26][181][182][183]

References

  1. ^ a b "Pharmacology". Dextroamphetamine. DrugBank. University of Alberta. 8 February 2013. Retrieved 5 November 2013. 
  2. ^ a b "Pharmacology". Amphetamine. DrugBank. University of Alberta. 8 February 2013. Retrieved 5 November 2013. 
  3. ^ a b c d e f g h i j k l m n o p q r s t u "Adderall XR Prescribing Information" (PDF). United States Food and Drug Administration. Shire US Inc. December 2013. pp. 12–13. Retrieved 30 December 2013. 
  4. ^ a b Lemke TL, Williams DA, Roche VF, Zito W (2013). Foye's Principles of Medicinal Chemistry (7th ed.). Philadelphia, USA: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 648. ISBN 9781609133450. Alternatively, direct oxidation of amphetamine by DA β-hydroxylase can afford norephedrine. 
  5. ^ a b Taylor KB (January 1974). "Dopamine-beta-hydroxylase. Stereochemical course of the reaction" (PDF). J. Biol. Chem. 249 (2): 454–458. PMID 4809526. Retrieved 6 November 2014. Dopamine-β-hydroxylase catalyzed the removal of the pro-R hydrogen atom and the production of 1-norephedrine, (2S,1R)-2-amino-1-hydroxyl-1-phenylpropane, from d-amphetamine. 
  6. ^ a b Horwitz D, Alexander RW, Lovenberg W, Keiser HR (May 1973). "Human serum dopamine-β-hydroxylase. Relationship to hypertension and sympathetic activity". Circ. Res. 32 (5): 594–599. doi:10.1161/01.RES.32.5.594. PMID 4713201. Subjects with exceptionally low levels of serum dopamine-β-hydroxylase activity showed normal cardiovascular function and normal β-hydroxylation of an administered synthetic substrate, hydroxyamphetamine. 
  7. ^ a b c d Krueger SK, Williams DE (June 2005). "Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism". Pharmacol. Ther. 106 (3): 357–387. doi:10.1016/j.pharmthera.2005.01.001. PMC 1828602. PMID 15922018. 
  8. ^ a b Cashman JR, Xiong YN, Xu L, Janowsky A (March 1999). "N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): role in bioactivation and detoxication". J. Pharmacol. Exp. Ther. 288 (3): 1251–1260. PMID 10027866. 
  9. ^ a b c "Substrate/Product". butyrate-CoA ligase. BRENDA. Technische Universität Braunschweig. Retrieved 7 May 2014. 
  10. ^ a b c "Substrate/Product". glycine N-acyltransferase. BRENDA. Technische Universität Braunschweig. Retrieved 7 May 2014. 
  11. ^ a b c d e "Pharmacology and Biochemistry". Amphetamine. Pubchem Compound. National Center for Biotechnology Information. Retrieved 12 October 2013. 
  12. ^ a b c d Santagati NA, Ferrara G, Marrazzo A, Ronsisvalle G (September 2002). "Simultaneous determination of amphetamine and one of its metabolites by HPLC with electrochemical detection". J. Pharm. Biomed. Anal. 30 (2): 247–255. doi:10.1016/S0731-7085(02)00330-8. PMID 12191709. 
  13. ^ a b c Millichap JG (2010). "Chapter 9: Medications for ADHD". In Millichap JG. Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD (2nd ed.). New York, USA: Springer. p. 112. ISBN 9781441913968.
    Table 9.2 Dextroamphetamine formulations of stimulant medication
    Dexedrine [Peak:2–3 h] [Duration:5–6 h] ...
    Adderall [Peak:2–3 h] [Duration:5–7 h]
    Dexedrine spansules [Peak:7–8 h] [Duration:12 h] ...
    Adderall XR [Peak:7–8 h] [Duration:12 h]
    Vyvanse [Peak:3–4 h] [Duration:12 h]
     
  14. ^ a b Brams M, Mao AR, Doyle RL (September 2008). "Onset of efficacy of long-acting psychostimulants in pediatric attention-deficit/hyperactivity disorder". Postgrad. Med. 120 (3): 69–88. doi:10.3810/pgm.2008.09.1909. PMID 18824827. Onset of efficacy was earliest for d-MPH-ER at 0.5 hours, followed by d, l-MPH-LA at 1 to 2 hours, MCD at 1.5 hours, d, l-MPH-OR at 1 to 2 hours, MAS-XR at 1.5 to 2 hours, MTS at 2 hours, and LDX at approximately 2 hours. ... MAS-XR, and LDX have a long duration of action at 12 hours postdose 
  15. ^ a b c d "Adderall IR Prescribing Information" (PDF). United States Food and Drug Administration. Barr Laboratories, Inc. March 2007. pp. 4–5. Retrieved 2 November 2013. 
  16. ^ a b "Biological Half-Life". AMPHETAMINE. United States National Library of Medicine – Toxnet. Hazardous Substances Data Bank. Retrieved 5 January 2014. Concentrations of (14)C-amphetamine declined less rapidly in the plasma of human subjects maintained on an alkaline diet (urinary pH > 7.5) than those on an acid diet (urinary pH < 6). Plasma half-lives of amphetamine ranged between 16-31 hr & 8-11 hr, respectively, & the excretion of (14)C in 24 hr urine was 45 & 70%. 
  17. ^ a b Mignot EJ (October 2012). "A practical guide to the therapy of narcolepsy and hypersomnia syndromes". Neurotherapeutics 9 (4): 739–752. doi:10.1007/s13311-012-0150-9. PMC 3480574. PMID 23065655. 
  18. ^ a b c d "Compound Summary". Amphetamine. PubChem Compound. National Center for Biotechnology Information. 11 April 2015. Retrieved 17 April 2015. 
  19. ^ "Properties: Predicted – EP|Suite". Amphetamine. Chemspider. Retrieved 6 November 2013. 
  20. ^ a b "Chemical and Physical Properties". Amphetamine. PubChem Compound. National Center for Biotechnology Information. Retrieved 13 October 2013. 
  21. ^ a b c d e f "Identification". Amphetamine. DrugBank. University of Alberta. 8 February 2013. Retrieved 13 October 2013. 
  22. ^ a b Greene SL, Kerr F, Braitberg G (October 2008). "Review article: amphetamines and related drugs of abuse". Emerg. Med. Australas 20 (5): 391–402. doi:10.1111/j.1742-6723.2008.01114.x. PMID 18973636. 
  23. ^ a b "Enantiomer". IUPAC Goldbook. International Union of Pure and Applied Chemistry. doi:10.1351/goldbook.E02069. Archived from the original on 17 March 2013. Retrieved 14 March 2014. One of a pair of molecular entities which are mirror images of each other and non-superposable. 
  24. ^ a b c d e f g h i j k l Heal DJ, Smith SL, Gosden J, Nutt DJ (June 2013). "Amphetamine, past and present – a pharmacological and clinical perspective". J. Psychopharmacol. 27 (6): 479–496. doi:10.1177/0269881113482532. PMC 3666194. PMID 23539642. 
  25. ^ a b c d e f g h i Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 13: Higher Cognitive Function and Behavioral Control". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. p. 318. ISBN 9780071481274. 
  26. ^ a b c d e f g Liddle DG, Connor DJ (June 2013). "Nutritional supplements and ergogenic AIDS". Prim. Care 40 (2): 487–505. doi:10.1016/j.pop.2013.02.009. PMID 23668655. Amphetamines and caffeine are stimulants that increase alertness, improve focus, decrease reaction time, and delay fatigue, allowing for an increased intensity and duration of training ...
    Physiologic and performance effects
     • Amphetamines increase dopamine/norepinephrine release and inhibit their reuptake, leading to central nervous system (CNS) stimulation
     • Amphetamines seem to enhance athletic performance in anaerobic conditions 39 40
     • Improved reaction time
     • Increased muscle strength and delayed muscle fatigue
     • Increased acceleration
     • Increased alertness and attention to task
     
  27. ^ a b c d e f g h i j k l m "Adderall XR Prescribing Information" (PDF). United States Food and Drug Administration. Shire US Inc. December 2013. p. 11. Retrieved 30 December 2013. 
  28. ^ a b c Rasmussen N (July 2006). "Making the first anti-depressant: amphetamine in American medicine, 1929–1950". J . Hist. Med. Allied Sci. 61 (3): 288–323. doi:10.1093/jhmas/jrj039. PMID 16492800. 
  29. ^ a b "Convention on psychotropic substances". United Nations Treaty Collection. United Nations. Retrieved 11 November 2013. 
  30. ^ a b Wilens TE, Adler LA, Adams J, Sgambati S, Rotrosen J, Sawtelle R, Utzinger L, Fusillo S (January 2008). "Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature". J. Am. Acad. Child Adolesc. Psychiatry 47 (1): 21–31. doi:10.1097/chi.0b013e31815a56f1. PMID 18174822. Stimulant misuse appears to occur both for performance enhancement and their euphorogenic effects, the latter being related to the intrinsic properties of the stimulants (e.g., IR versus ER profile) ...

    Although useful in the treatment of ADHD, stimulants are controlled II substances with a history of preclinical and human studies showing potential abuse liability.
     
  31. ^ a b c Montgomery KA (June 2008). "Sexual desire disorders". Psychiatry (Edgmont) 5 (6): 50–55. PMC 2695750. PMID 19727285. 
  32. ^ "Amphetamine". Medical Subject Headings. National Institutes of Health, National Library of Medicine. Retrieved 16 December 2013. 
  33. ^ "Guidelines on the Use of International Nonproprietary Names (INNS) for Pharmaceutical Substances". World Health Organization. 1997. Retrieved 1 December 2014. In principle, INNs are selected only for the active part of the molecule which is usually the base, acid or alcohol. In some cases, however, the active molecules need to be expanded for various reasons, such as formulation purposes, bioavailability or absorption rate. In 1975 the experts designated for the selection of INN decided to adopt a new policy for naming such molecules. In future, names for different salts or esters of the same active substance should differ only with regard to the inactive moiety of the molecule. ... The latter are called modified INNs (INNMs). 
  34. ^ Yoshida T (1997). "Chapter 1: Use and Misuse of Amphetamines: An International Overview". In Klee H. Amphetamine Misuse: International Perspectives on Current Trends. Amsterdam, Netherlands: Harwood Academic Publishers. p. 2. ISBN 9789057020810. Retrieved 1 December 2014. Amphetamine, in the singular form, properly applies to the racemate of 2-amino-1-phenylpropane. ... In its broadest context, however, the term can even embrace a large number of structurally and pharmacologically related substances. 
  35. ^ a b c d e f g h i "National Drug Code Amphetamine Search Results". National Drug Code Directory. United States Food and Drug Administration. Archived from the original on 7 February 2014. Retrieved 16 December 2013. 
  36. ^ a b c d e f g h i j k l m n "Adderall XR Prescribing Information" (PDF). United States Food and Drug Administration. Shire US Inc. December 2013. pp. 4–8. Retrieved 30 December 2013. 
  37. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". J. Neurochem. 116 (2): 164–176. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468. 
  38. ^ a b c d e f g h i j k l m n o p q r s t u v w Westfall DP, Westfall TC (2010). "Miscellaneous Sympathomimetic Agonists". In Brunton LL, Chabner BA, Knollmann BC. Goodman & Gilman's Pharmacological Basis of Therapeutics (12th ed.). New York, USA: McGraw-Hill. ISBN 9780071624428. 
  39. ^ a b c d e Shoptaw SJ, Kao U, Ling W (January 2009). Shoptaw SJ, Ali R, ed. "Treatment for amphetamine psychosis". Cochrane Database Syst. Rev. (1): CD003026. doi:10.1002/14651858.CD003026.pub3. PMID 19160215. A minority of individuals who use amphetamines develop full-blown psychosis requiring care at emergency departments or psychiatric hospitals. In such cases, symptoms of amphetamine psychosis commonly include paranoid and persecutory delusions as well as auditory and visual hallucinations in the presence of extreme agitation. More common (about 18%) is for frequent amphetamine users to report psychotic symptoms that are sub-clinical and that do not require high-intensity intervention ...
    About 5–15% of the users who develop an amphetamine psychosis fail to recover completely (Hofmann 1983) ...
    Findings from one trial indicate use of antipsychotic medications effectively resolves symptoms of acute amphetamine psychosis.
     
  40. ^ a b c Greydanus D. "Stimulant Misuse: Strategies to Manage a Growing Problem" (PDF). American College Health Association (Review Article). ACHA Professional Development Program. p. 20. Retrieved 2 November 2013. 
  41. ^ a b Kollins SH (May 2008). "A qualitative review of issues arising in the use of psycho-stimulant medications in patients with ADHD and co-morbid substance use disorders". Curr. Med. Res. Opin. 24 (5): 1345–1357. doi:10.1185/030079908X280707. PMID 18384709. When oral formulations of psychostimulants are used at recommended doses and frequencies, they are unlikely to yield effects consistent with abuse potential in patients with ADHD. 
  42. ^ a b Stolerman IP (2010). Stolerman IP, ed. Encyclopedia of Psychopharmacology. Berlin, Germany; London, England: Springer. p. 78. ISBN 9783540686989. 
  43. ^ a b c d e f g Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacol. Ther. 125 (3): 363–375. doi:10.1016/j.pharmthera.2009.11.005. PMID 19948186. 
  44. ^ a b c d "Amphetamine". European Monitoring Centre for Drugs and Drug Addiction. Retrieved 19 October 2013. 
  45. ^ a b Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, Carvalho F, Bastos Mde L (August 2012). "Toxicity of amphetamines: an update". Arch. Toxicol. 86 (8): 1167–1231. doi:10.1007/s00204-012-0815-5. PMID 22392347. 
  46. ^ Berman S, O'Neill J, Fears S, Bartzokis G, London ED (October 2008). "Abuse of amphetamines and structural abnormalities in the brain". Ann. N. Y. Acad. Sci. 1141: 195–220. doi:10.1196/annals.1441.031. PMC 2769923. PMID 18991959. 
  47. ^ a b Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K (February 2013). "Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects". JAMA Psychiatry 70 (2): 185–198. doi:10.1001/jamapsychiatry.2013.277. PMID 23247506. 
  48. ^ a b Spencer TJ, Brown A, Seidman LJ, Valera EM, Makris N, Lomedico A, Faraone SV, Biederman J (September 2013). "Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies". J. Clin. Psychiatry 74 (9): 902–917. doi:10.4088/JCP.12r08287. PMC 3801446. PMID 24107764. 
  49. ^ a b Frodl T, Skokauskas N (February 2012). "Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects.". Acta psychiatrica Scand. 125 (2): 114–126. doi:10.1111/j.1600-0447.2011.01786.x. PMID 22118249. 
  50. ^ a b c d Millichap JG (2010). "Chapter 9: Medications for ADHD". In Millichap JG. Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD (2nd ed.). New York, USA: Springer. pp. 121–123, 125–127. ISBN 9781441913968. Ongoing research has provided answers to many of the parents’ concerns, and has confirmed the effectiveness and safety of the long-term use of medication. 
  51. ^ Arnold LE, Hodgkins P, Caci H, Kahle J, Young S (February 2015). "Effect of treatment modality on long-term outcomes in attention-deficit/hyperactivity disorder: a systematic review". PLoS ONE 10 (2): e0116407. doi:10.1371/journal.pone.0116407. PMC 4340791. PMID 25714373. The highest proportion of improved outcomes was reported with combination treatment (83% of outcomes). Among significantly improved outcomes, the largest effect sizes were found for combination treatment. The greatest improvements were associated with academic, self-esteem, or social function outcomes. 
  52. ^ a b c Huang YS, Tsai MH (July 2011). "Long-term outcomes with medications for attention-deficit hyperactivity disorder: current status of knowledge". CNS Drugs 25 (7): 539–554. doi:10.2165/11589380-000000000-00000. PMID 21699268. Recent studies have demonstrated that stimulants, along with the non-stimulants atomoxetine and extended-release guanfacine, are continuously effective for more than 2-year treatment periods with few and tolerable adverse effects. 
  53. ^ a b c Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. pp. 154–157. ISBN 9780071481274. 
  54. ^ a b c d e Bidwell LC, McClernon FJ, Kollins SH (August 2011). "Cognitive enhancers for the treatment of ADHD". Pharmacol. Biochem. Behav. 99 (2): 262–274. doi:10.1016/j.pbb.2011.05.002. PMC 3353150. PMID 21596055. 
  55. ^ Parker J, Wales G, Chalhoub N, Harpin V (September 2013). "The long-term outcomes of interventions for the management of attention-deficit hyperactivity disorder in children and adolescents: a systematic review of randomized controlled trials". Psychol. Res. Behav. Manag. 6: 87–99. doi:10.2147/PRBM.S49114. PMC 3785407. PMID 24082796. Only one paper53 examining outcomes beyond 36 months met the review criteria. ... There is high level evidence suggesting that pharmacological treatment can have a major beneficial effect on the core symptoms of ADHD (hyperactivity, inattention, and impulsivity) in approximately 80% of cases compared with placebo controls, in the short term. 
  56. ^ Millichap JG (2010). "Chapter 9: Medications for ADHD". In Millichap JG. Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD (2nd ed.). New York, USA: Springer. pp. 111–113. ISBN 9781441913968. 
  57. ^ "Stimulants for Attention Deficit Hyperactivity Disorder". WebMD. Healthwise. 12 April 2010. Retrieved 12 November 2013. 
  58. ^ Scholten RJ, Clarke M, Hetherington J (August 2005). "The Cochrane Collaboration". Eur. J. Clin. Nutr. 59 Suppl 1: S147–S149; discussion S195–S196. doi:10.1038/sj.ejcn.1602188. PMID 16052183. 
  59. ^ a b Castells X, Ramos-Quiroga JA, Bosch R, Nogueira M, Casas M (June 2011). Castells X, ed. "Amphetamines for Attention Deficit Hyperactivity Disorder (ADHD) in adults". Cochrane Database Syst. Rev. (6): CD007813. doi:10.1002/14651858.CD007813.pub2. PMID 21678370. 
  60. ^ Pringsheim T, Steeves T (April 2011). Pringsheim T, ed. "Pharmacological treatment for Attention Deficit Hyperactivity Disorder (ADHD) in children with comorbid tic disorders". Cochrane Database Syst. Rev. (4): CD007990. doi:10.1002/14651858.CD007990.pub2. PMID 21491404. 
  61. ^ a b Spencer RC, Devilbiss DM, Berridge CW (June 2015). "The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex". Biol. Psychiatry 77 (11): 940–950. doi:10.1016/j.biopsych.2014.09.013. PMID 25499957. The procognitive actions of psychostimulants are only associated with low doses. Surprisingly, despite nearly 80 years of clinical use, the neurobiology of the procognitive actions of psychostimulants has only recently been systematically investigated. Findings from this research unambiguously demonstrate that the cognition-enhancing effects of psychostimulants involve the preferential elevation of catecholamines in the PFC and the subsequent activation of norepinephrine α2 and dopamine D1 receptors. ... This differential modulation of PFC-dependent processes across dose appears to be associated with the differential involvement of noradrenergic α2 versus α1 receptors. Collectively, this evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers (improving PFC-dependent function). This information has potentially important clinical implications as well as relevance for public health policy regarding the widespread clinical use of psychostimulants and for the development of novel pharmacologic treatments for attention-deficit/hyperactivity disorder and other conditions associated with PFC dysregulation. 
  62. ^ Ilieva IP, Hook CJ, Farah MJ (January 2015). "Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis". J. Cogn. Neurosci.: 1–21. doi:10.1162/jocn_a_00776. PMID 25591060. 
  63. ^ Devous MD, Trivedi MH, Rush AJ (April 2001). "Regional cerebral blood flow response to oral amphetamine challenge in healthy volunteers". J. Nucl. Med. 42 (4): 535–542. PMID 11337538. 
  64. ^ a b c Wood S, Sage JR, Shuman T, Anagnostaras SG (January 2014). "Psychostimulants and cognition: a continuum of behavioral and cognitive activation". Pharmacol. Rev. 66 (1): 193–221. doi:10.1124/pr.112.007054. PMID 24344115. 
  65. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 10: Neural and Neuroendocrine Control of the Internal Milieu". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. p. 266. ISBN 9780071481274. Dopamine acts in the nucleus accumbens to attach motivational significance to stimuli associated with reward. 
  66. ^ Twohey M (26 March 2006). "Pills become an addictive study aid". JS Online. Archived from the original on 15 August 2007. Retrieved 2 December 2007. 
  67. ^ Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ (October 2006). "Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration". Pharmacotherapy 26 (10): 1501–1510. doi:10.1592/phco.26.10.1501. PMC 1794223. PMID 16999660. 
  68. ^ Weyandt LL, Oster DR, Marraccini ME, Gudmundsdottir BG, Munro BA, Zavras BM et al. (September 2014). "Pharmacological interventions for adolescents and adults with ADHD: stimulant and nonstimulant medications and misuse of prescription stimulants". Psychol. Res. Behav. Manag. 7: 223–249. doi:10.2147/PRBM.S47013. PMC 4164338. PMID 25228824. misuse of prescription stimulants has become a serious problem on college campuses across the US and has been recently documented in other countries as well. ... Indeed, large numbers of students claim to have engaged in the nonmedical use of prescription stimulants, which is reflected in lifetime prevalence rates of prescription stimulant misuse ranging from 5% to nearly 34% of students. 
  69. ^ Clemow DB, Walker DJ (September 2014). "The potential for misuse and abuse of medications in ADHD: a review". Postgrad. Med. 126 (5): 64–81. doi:10.3810/pgm.2014.09.2801. PMID 25295651. Overall, the data suggest that ADHD medication misuse and diversion are common health care problems for stimulant medications, with the prevalence believed to be approximately 5% to 10% of high school students and 5% to 35% of college students, depending on the study. 
  70. ^ Bracken NM (January 2012). "National Study of Substance Use Trends Among NCAA College Student-Athletes" (PDF). NCAA Publications. National Collegiate Athletic Association. Retrieved 8 October 2013. 
  71. ^ Docherty JR (June 2008). "Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA)". Br. J. Pharmacol. 154 (3): 606–622. doi:10.1038/bjp.2008.124. PMC 2439527. PMID 18500382. 
  72. ^ a b c d Parr JW (July 2011). "Attention-deficit hyperactivity disorder and the athlete: new advances and understanding". Clin. Sports Med. 30 (3): 591–610. doi:10.1016/j.csm.2011.03.007. PMID 21658550. 
  73. ^ a b c Roelands B, de Koning J, Foster C, Hettinga F, Meeusen R (May 2013). "Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing". Sports Med. 43 (5): 301–311. doi:10.1007/s40279-013-0030-4. PMID 23456493. 
  74. ^ Parker KL, Lamichhane D, Caetano MS, Narayanan NS (October 2013). "Executive dysfunction in Parkinson's disease and timing deficits". Front. Integr. Neurosci. 7: 75. doi:10.3389/fnint.2013.00075. PMC 3813949. PMID 24198770. Manipulations of dopaminergic signaling profoundly influence interval timing, leading to the hypothesis that dopamine influences internal pacemaker, or “clock,” activity. For instance, amphetamine, which increases concentrations of dopamine at the synaptic cleft advances the start of responding during interval timing, whereas antagonists of D2 type dopamine receptors typically slow timing;... Depletion of dopamine in healthy volunteers impairs timing, while amphetamine releases synaptic dopamine and speeds up timing. 
  75. ^ a b c d e f g "Adderall XR Prescribing Information" (PDF). United States Food and Drug Administration. Shire US Inc. December 2013. pp. 4–6. Retrieved 30 December 2013. 
  76. ^ a b c d e f g h i j Heedes G, Ailakis J. "Amphetamine (PIM 934)". INCHEM. International Programme on Chemical Safety. Retrieved 24 June 2014. 
  77. ^ a b c d Vitiello B (April 2008). "Understanding the risk of using medications for attention deficit hyperactivity disorder with respect to physical growth and cardiovascular function". Child Adolesc. Psychiatr. Clin. N. Am. 17 (2): 459–474. doi:10.1016/j.chc.2007.11.010. PMC 2408826. PMID 18295156. 
  78. ^ Ramey JT, Bailen E, Lockey RF (2006). "Rhinitis medicamentosa" (PDF). J. Investig. Allergol. Clin. Immunol. 16 (3): 148–155. PMID 16784007. Retrieved 29 April 2015. Table 2. Decongestants Causing Rhinitis Medicamentosa
    – Nasal decongestants:
      – Sympathomimetic:
       • Amphetamine
     
  79. ^ "FDA Drug Safety Communication: Safety Review Update of Medications used to treat Attention-Deficit/Hyperactivity Disorder (ADHD) in children and young adults". United States Food and Drug Administration. 20 December 2011. Retrieved 4 November 2013. 
  80. ^ Cooper WO, Habel LA, Sox CM, Chan KA, Arbogast PG, Cheetham TC, Murray KT, Quinn VP, Stein CM, Callahan ST, Fireman BH, Fish FA, Kirshner HS, O'Duffy A, Connell FA, Ray WA (November 2011). "ADHD drugs and serious cardiovascular events in children and young adults". N. Engl. J. Med. 365 (20): 1896–1904. doi:10.1056/NEJMoa1110212. PMID 22043968. 
  81. ^ "FDA Drug Safety Communication: Safety Review Update of Medications used to treat Attention-Deficit/Hyperactivity Disorder (ADHD) in adults". United States Food and Drug Administration. 15 December 2011. Retrieved 4 November 2013. 
  82. ^ Habel LA, Cooper WO, Sox CM, Chan KA, Fireman BH, Arbogast PG, Cheetham TC, Quinn VP, Dublin S, Boudreau DM, Andrade SE, Pawloski PA, Raebel MA, Smith DH, Achacoso N, Uratsu C, Go AS, Sidney S, Nguyen-Huynh MN, Ray WA, Selby JV (December 2011). "ADHD medications and risk of serious cardiovascular events in young and middle-aged adults". JAMA 306 (24): 2673–2683. doi:10.1001/jama.2011.1830. PMC 3350308. PMID 22161946. 
  83. ^ O'Connor PG (February 2012). "Amphetamines". Merck Manual for Health Care Professionals. Merck. Retrieved 8 May 2012. 
  84. ^ a b Childs E, de Wit H (May 2009). "Amphetamine-induced place preference in humans". Biol. Psychiatry 65 (10): 900–904. doi:10.1016/j.biopsych.2008.11.016. PMC 2693956. PMID 19111278. This study demonstrates that humans, like nonhumans, prefer a place associated with amphetamine administration. These findings support the idea that subjective responses to a drug contribute to its ability to establish place conditioning. 
  85. ^ a b Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 15: Reinforcement and Addictive Disorders". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 364–375. ISBN 9780071481274. 
  86. ^ a b Spiller HA, Hays HL, Aleguas A (June 2013). "Overdose of drugs for attention-deficit hyperactivity disorder: clinical presentation, mechanisms of toxicity, and management". CNS Drugs 27 (7): 531–543. doi:10.1007/s40263-013-0084-8. PMID 23757186. Amphetamine, dextroamphetamine, and methylphenidate act as substrates for the cellular monoamine transporter, especially the dopamine transporter (DAT) and less so the norepinephrine (NET) and serotonin transporter. The mechanism of toxicity is primarily related to excessive extracellular dopamine, norepinephrine, and serotonin. 
  87. ^ Collaborators (2015). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013" (PDF). Lancet 385 (9963): 117–171. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442. Retrieved 3 March 2015. Amphetamine use disorders ... 3,788 (3,425–4,145) 
  88. ^ a b Kanehisa Laboratories (10 October 2014). "Amphetamine – Homo sapiens (human)". KEGG Pathway. Retrieved 31 October 2014. 
  89. ^ a b c d e f Nechifor M (March 2008). "Magnesium in drug dependences". Magnes. Res. 21 (1): 5–15. PMID 18557129. 
  90. ^ a b c d e Ruffle JK (November 2014). "Molecular neurobiology of addiction: what's all the (Δ)FosB about?". Am. J. Drug Alcohol Abuse 40 (6): 428–437. doi:10.3109/00952990.2014.933840. PMID 25083822. ΔFosB is an essential transcription factor implicated in the molecular and behavioral pathways of addiction following repeated drug exposure. 
  91. ^ a b c d e Nestler EJ (December 2013). "Cellular basis of memory for addiction". Dialogues Clin. Neurosci. 15 (4): 431–443. PMC 3898681. PMID 24459410. 
  92. ^ a b c Robison AJ, Nestler EJ (November 2011). "Transcriptional and epigenetic mechanisms of addiction". Nat. Rev. Neurosci. 12 (11): 623–637. doi:10.1038/nrn3111. PMC 3272277. PMID 21989194. ΔFosB serves as one of the master control proteins governing this structural plasticity. 
  93. ^ a b c d e f g h i j k l m n o p q r s t u v w Olsen CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. 
  94. ^ a b c d e Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (September 2013). "Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis". Neurosci. Biobehav. Rev. 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. 
  95. ^ a b c d Linke SE, Ussher M (January 2015). "Exercise-based treatments for substance use disorders: evidence, theory, and practicality". Am. J. Drug Alcohol Abuse 41 (1): 7–15. doi:10.3109/00952990.2014.976708. PMID 25397661. 
  96. ^ a b Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 15: Reinforcement and Addictive Disorders". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. p. 386. ISBN 9780071481274. Currently, cognitive–behavioral therapies are the most successful treatment available for preventing the relapse of psychostimulant use. 
  97. ^ Albertson TE (2011). "Amphetamines". In Olson KR, Anderson IB, Benowitz NL, Blanc PD, Kearney TE, Kim-Katz SY, Wu AHB. Poisoning & Drug Overdose (6th ed.). New York: McGraw-Hill Medical. pp. 77–79. ISBN 9780071668330. 
  98. ^ "Glossary of Terms". Mount Sinai School of Medicine. Department of Neuroscience. Retrieved 9 February 2015. 
  99. ^ a b c d Broussard JI (January 2012). "Co-transmission of dopamine and glutamate". J. Gen. Physiol. 139 (1): 93–96. doi:10.1085/jgp.201110659. PMC 3250102. PMID 22200950. 
  100. ^ Descarries L, Berube-Carriere N, Riad M, Bo GD, Mendez JA, Trudeau LE (August 2008). "Glutamate in dopamine neurons: synaptic versus diffuse transmission". Brain Res. Rev. 58 (2): 290–302. doi:10.1016/j.brainresrev.2007.10.005. PMID 18042492. 
  101. ^ a b Renthal W, Nestler EJ (September 2009). "Chromatin regulation in drug addiction and depression". Dialogues Clin. Neurosci. 11 (3): 257–268. PMC 2834246. PMID 19877494. Retrieved 21 July 2014. 
  102. ^ Nestler EJ (October 2008). "Review. Transcriptional mechanisms of addiction: role of DeltaFosB". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363 (1507): 3245–3255. doi:10.1098/rstb.2008.0067. PMC 2607320. PMID 18640924. 
  103. ^ a b Nestler EJ (December 2012). "Transcriptional mechanisms of drug addiction". Clin. Psychopharmacol. Neurosci. 10 (3): 136–143. doi:10.9758/cpn.2012.10.3.136. PMC 3569166. PMID 23430970. The 35-37 kD ΔFosB isoforms accumulate with chronic drug exposure due to their extraordinarily long half-lives. ... As a result of its stability, the ΔFosB protein persists in neurons for at least several weeks after cessation of drug exposure. ... ΔFosB overexpression in nucleus accumbens induces NFκB 
  104. ^ "Amphetamines: Drug Use and Abuse". Merck Manual Home Edition. Merck. February 2003. Archived from the original on 17 February 2007. Retrieved 28 February 2007. 
  105. ^ Perez-Mana C, Castells X, Torrens M, Capella D, Farre M (September 2013). Pérez-Mañá C, ed. "Efficacy of psychostimulant drugs for amphetamine abuse or dependence". Cochrane Database Syst. Rev. 9: CD009695. doi:10.1002/14651858.CD009695.pub2. PMID 23996457. 
  106. ^ Hyman SE, Malenka RC, Nestler EJ (July 2006). "Neural mechanisms of addiction: the role of reward-related learning and memory". Annu. Rev. Neurosci. 29: 565–598. doi:10.1146/annurev.neuro.29.051605.113009. PMID 16776597. 
  107. ^ a b c d e f g h Robison AJ, Nestler EJ (November 2011). "Transcriptional and epigenetic mechanisms of addiction". Nat. Rev. Neurosci. 12 (11): 623–637. doi:10.1038/nrn3111. PMC 3272277. PMID 21989194. 
  108. ^ a b c d e Steiner H, Van Waes V (January 2013). "Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants". Prog. Neurobiol. 100: 60–80. doi:10.1016/j.pneurobio.2012.10.001. PMC 3525776. PMID 23085425. 
  109. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 4: Signal Transduction in the Brain". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. p. 94. ISBN 9780071481274. 
  110. ^ Kanehisa Laboratories (29 October 2014). "Alcoholism – Homo sapiens (human)". KEGG Pathway. Retrieved 31 October 2014. 
  111. ^ Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P (February 2009). "Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens". Proc. Natl. Acad. Sci. U.S.A. 106 (8): 2915–2920. doi:10.1073/pnas.0813179106. PMC 2650365. PMID 19202072. 
  112. ^ Nestler EJ (January 2014). "Epigenetic mechanisms of drug addiction". Neuropharmacology. 76 Pt B: 259–268. doi:10.1016/j.neuropharm.2013.04.004. PMC 3766384. PMID 23643695. 
  113. ^ a b Blum K, Werner T, Carnes S, Carnes P, Bowirrat A, Giordano J, Oscar-Berman M, Gold M (March 2012). "Sex, drugs, and rock 'n' roll: hypothesizing common mesolimbic activation as a function of reward gene polymorphisms". J. Psychoactive Drugs 44 (1): 38–55. doi:10.1080/02791072.2012.662112. PMC 4040958. PMID 22641964. 
  114. ^ a b Pitchers KK, Vialou V, Nestler EJ, Laviolette SR, Lehman MN, Coolen LM (February 2013). "Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator". J. Neurosci. 33 (8): 3434–3442. doi:10.1523/JNEUROSCI.4881-12.2013. PMC 3865508. PMID 23426671. 
  115. ^ Stoops WW, Rush CR (May 2014). "Combination pharmacotherapies for stimulant use disorder: a review of clinical findings and recommendations for future research". Expert Rev Clin Pharmacol 7 (3): 363–374. doi:10.1586/17512433.2014.909283. PMID 24716825. Despite concerted efforts to identify a pharmacotherapy for managing stimulant use disorders, no widely effective medications have been approved. 
  116. ^ Perez-Mana C, Castells X, Torrens M, Capella D, Farre M (September 2013). "Efficacy of psychostimulant drugs for amphetamine abuse or dependence". Cochrane Database Syst. Rev. 9: CD009695. doi:10.1002/14651858.CD009695.pub2. PMID 23996457. To date, no pharmacological treatment has been approved for [addiction], and psychotherapy remains the mainstay of treatment. ... Results of this review do not support the use of psychostimulant medications at the tested doses as a replacement therapy 
  117. ^ Forray A, Sofuoglu M (February 2014). "Future pharmacological treatments for substance use disorders". Br. J. Clin. Pharmacol. 77 (2): 382–400. doi:10.1111/j.1365-2125.2012.04474.x. PMC 4014020. PMID 23039267. 
  118. ^ a b Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 5: Excitatory and Inhibitory Amino Acids". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. pp. 124–125. ISBN 9780071481274. 
  119. ^ a b c d Shoptaw SJ, Kao U, Heinzerling K, Ling W (April 2009). Shoptaw SJ, ed. "Treatment for amphetamine withdrawal". Cochrane Database Syst. Rev. (2): CD003021. doi:10.1002/14651858.CD003021.pub2. PMID 19370579. 
  120. ^ "Adderall IR Prescribing Information" (PDF). United States Food and Drug Administration. Barr Laboratories, Inc. March 2007. Retrieved 4 November 2013. 
  121. ^ "Dexedrine Medication Guide" (PDF). United States Food and Drug Administration. Amedra Pharmaceuticals LLC. May 2013. Retrieved 4 November 2013. 
  122. ^ "Adderall XR Prescribing Information" (PDF). United States Food and Drug Administration. Shire US Inc. December 2013. Retrieved 30 December 2013. 
  123. ^ Advokat C (July 2007). "Update on amphetamine neurotoxicity and its relevance to the treatment of ADHD". J. Atten. Disord. 11 (1): 8–16. doi:10.1177/1087054706295605. PMID 17606768. 
  124. ^ "Amphetamine". Hazardous Substances Data Bank. National Library of Medicine. Retrieved 26 February 2014. Direct toxic damage to vessels seems unlikely because of the dilution that occurs before the drug reaches the cerebral circulation. 
  125. ^ Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 15: Reinforcement and addictive disorders". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. p. 370. ISBN 9780071481274. Unlike cocaine and amphetamine, methamphetamine is directly toxic to midbrain dopamine neurons. 
  126. ^ Sulzer D, Zecca L (February 2000). "Intraneuronal dopamine-quinone synthesis: a review". Neurotox. Res. 1 (3): 181–195. doi:10.1007/BF03033289. PMID 12835101. 
  127. ^ Miyazaki I, Asanuma M (June 2008). "Dopaminergic neuron-specific oxidative stress caused by dopamine itself". Acta Med. Okayama 62 (3): 141–150. PMID 18596830. 
  128. ^ Hofmann FG (1983). A Handbook on Drug and Alcohol Abuse: The Biomedical Aspects (2nd ed.). New York, USA: Oxford University Press. p. 329. ISBN 9780195030570. 
  129. ^ a b c d e f g h i j k "Adderall XR Prescribing Information" (PDF). United States Food and Drug Administration. Shire US Inc. December 2013. pp. 8–10. Retrieved 30 December 2013. 
  130. ^ a b c d e f g h i j k l m n Eiden LE, Weihe E (January 2011). "VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse". Ann. N. Y. Acad. Sci. 1216: 86–98. doi:10.1111/j.1749-6632.2010.05906.x. PMID 21272013. 
  131. ^ a b Ledonne A, Berretta N, Davoli A, Rizzo GR, Bernardi G, Mercuri NB (July 2011). "Electrophysiological effects of trace amines on mesencephalic dopaminergic neurons". Front. Syst. Neurosci. 5: 56. doi:10.3389/fnsys.2011.00056. PMC 3131148. PMID 21772817. 
  132. ^ a b mct (28 January 2012). "TAAR1". GenAtlas. University of Paris. Retrieved 29 May 2014.
     • tonically activates inwardly rectifying K(+) channels, which reduces the basal firing frequency of dopamine (DA) neurons of the ventral tegmental area (VTA)
     
  133. ^ a b c Maguire JJ, Davenport AP (2 December 2014). "TA1 receptor". IUPHAR database. International Union of Basic and Clinical Pharmacology. Retrieved 8 December 2014. 
  134. ^ a b c Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG (July 2014). "Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons". Neuron 83 (2): 404–416. doi:10.1016/j.neuron.2014.05.043. PMC 4159050. PMID 25033183. AMPH also increases intracellular calcium (Gnegy et al., 2004) that is associated with calmodulin/CamKII activation (Wei et al., 2007) and modulation and trafficking of the DAT (Fog et al., 2006; Sakrikar et al., 2012). 
  135. ^ a b Vaughan RA, Foster JD (September 2013). "Mechanisms of dopamine transporter regulation in normal and disease states". Trends Pharmacol. Sci. 34 (9): 489–496. doi:10.1016/j.tips.2013.07.005. PMC 3831354. PMID 23968642. 
  136. ^ Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (July 2001). "Trace amines: identification of a family of mammalian G protein-coupled receptors". Proc. Natl. Acad. Sci. U.S.A. 98 (16): 8966–8971. doi:10.1073/pnas.151105198. PMC 55357. PMID 11459929. 
  137. ^ a b "SLC1A1 solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1 [ Homo sapiens (human) ]". NCBI Gene. National Center for Biotechnology Information. Retrieved 11 November 2014. Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons. ... internalization of EAAT3 triggered by amphetamine increases glutamatergic signaling and thus contributes to the effects of amphetamine on neurotransmission. 
  138. ^ Zhu HJ, Appel DI, Gründemann D, Markowitz JS (July 2010). "Interaction of organic cation transporter 3 (SLC22A3) and amphetamine". J. Neurochem. 114 (1): 142–149. doi:10.1111/j.1471-4159.2010.06738.x. PMC 3775896. PMID 20402963. 
  139. ^ Rytting E, Audus KL (January 2005). "Novel organic cation transporter 2-mediated carnitine uptake in placental choriocarcinoma (BeWo) cells". J. Pharmacol. Exp. Ther. 312 (1): 192–198. doi:10.1124/jpet.104.072363. PMID 15316089. 
  140. ^ Inazu M, Takeda H, Matsumiya T (August 2003). "[The role of glial monoamine transporters in the central nervous system]". Nihon Shinkei Seishin Yakurigaku Zasshi (in Japanese) 23 (4): 171–178. PMID 13677912. 
  141. ^ a b c Vicentic A, Jones DC (February 2007). "The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction". J. Pharmacol. Exp. Ther. 320 (2): 499–506. doi:10.1124/jpet.105.091512. PMID 16840648. The physiological importance of CART was further substantiated in numerous human studies demonstrating a role of CART in both feeding and psychostimulant addiction. ... Colocalization studies also support a role for CART in the actions of psychostimulants. ... CART and DA receptor transcripts colocalize (Beaudry et al., 2004). Second, dopaminergic nerve terminals in the NAc synapse on CART-containing neurons (Koylu et al., 1999), hence providing the proximity required for neurotransmitter signaling. These studies suggest that DA plays a role in regulating CART gene expression possibly via the activation of CREB. 
  142. ^ a b c "Biomolecular Interactions and Pathways". Amphetamine. PubChem Compound. National Center for Biotechnology Information. Retrieved 13 October 2013. 
  143. ^ Zhang M, Han L, Xu Y (June 2012). "Roles of cocaine- and amphetamine-regulated transcript in the central nervous system". Clin. Exp. Pharmacol. Physiol. 39 (6): 586–592. doi:10.1111/j.1440-1681.2011.05642.x. PMID 22077697. Recently, it was demonstrated that CART, as a neurotrophic peptide, had a cerebroprotective against focal ischaemic stroke and inhibited the neurotoxicity of β-amyloid protein, which focused attention on the role of CART in the central nervous system (CNS) and neurological diseases. 3. In fact, little is known about the way in which CART peptide interacts with its receptors, initiates downstream cascades and finally exerts its neuroprotective effect under normal or pathological conditions. The literature indicates that there are many factors, such as regulation of the immunological system and protection against energy failure, that may be involved in the cerebroprotection afforded by CART 
  144. ^ a b Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ (October 2008). "CART peptides: regulators of body weight, reward and other functions". Nat. Rev. Neurosci. 9 (10): 747–758. doi:10.1038/nrn2493. PMC 4418456. PMID 18802445. Several studies on CART (cocaine- and amphetamine-regulated transcript)-peptide-induced cell signalling have demonstrated that CART peptides activate at least three signalling mechanisms. First, CART 55–102 inhibited voltage-gated L-type Ca2+ channels ... 
  145. ^ Lin Y, Hall RA, Kuhar MJ (October 2011). "CART peptide stimulation of G protein-mediated signaling in differentiated PC12 cells: identification of PACAP 6–38 as a CART receptor antagonist". Neuropeptides 45 (5): 351–358. doi:10.1016/j.npep.2011.07.006. PMC 3170513. PMID 21855138. 
  146. ^ "Monoamine oxidase (Homo sapiens)". BRENDA. Technische Universität Braunschweig. 1 January 2014. Retrieved 4 May 2014. 
  147. ^ a b c "Targets". Amphetamine. T3DB. University of Alberta. Retrieved 24 February 2015. 
  148. ^ a b Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L et al. (March 1998). "Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications". NIDA Res. Monogr. 178: 440–466. PMID 9686407. 
  149. ^ a b c Hutson PH, Tarazi FI, Madhoo M, Slawecki C, Patkar AA (September 2014). "Preclinical pharmacology of amphetamine: implications for the treatment of neuropsychiatric disorders". Pharmacol. Ther. 143 (3): 253–264. doi:10.1016/j.pharmthera.2014.03.005. PMID 24657455. 
  150. ^ a b c Dickson SL, Egecioglu E, Landgren S, Skibicka KP, Engel JA, Jerlhag E (June 2011). "The role of the central ghrelin system in reward from food and chemical drugs". Mol. Cell. Endocrinol. 340 (1): 80–87. doi:10.1016/j.mce.2011.02.017. PMID 21354264. 
  151. ^ a b Loseth GE, Ellingsen DM, Leknes S (December 2014). "State-dependent μ-opioid modulation of social motivation". Front. Behav. Neurosci. 8: 1–15. doi:10.3389/fnbeh.2014.00430. PMC 4264475. PMID 25565999. Similar MOR activation patterns were reported during positive mood induced by an amusing video clip (Koepp et al., 2009) and following amphetamine administration in humans (Colasanti et al., 2012). 
  152. ^ a b Colasanti A, Searle GE, Long CJ, Hill SP, Reiley RR, Quelch D et al. (September 2012). "Endogenous opioid release in the human brain reward system induced by acute amphetamine administration". Biol. Psychiatry 72 (5): 371–377. doi:10.1016/j.biopsych.2012.01.027. PMID 22386378. 
  153. ^ a b c Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (June 2010). "Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate". J. Neurosci. 30 (24): 8229–8233. doi:10.1523/JNEUROSCI.1754-10.2010. PMC 2918390. PMID 20554874. 
  154. ^ a b Lewin AH, Miller GM, Gilmour B (December 2011). "Trace amine-associated receptor 1 is a stereoselective binding site for compounds in the amphetamine class". Bioorg. Med. Chem. 19 (23): 7044–7048. doi:10.1016/j.bmc.2011.10.007. PMC 3236098. PMID 22037049. 
  155. ^ a b Maguire JJ, Parker WA, Foord SM, Bonner TI, Neubig RR, Davenport AP (March 2009). "International Union of Pharmacology. LXXII. Recommendations for trace amine receptor nomenclature". Pharmacol. Rev. 61 (1): 1–8. doi:10.1124/pr.109.001107. PMC 2830119. PMID 19325074. 
  156. ^ Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (May 2011). "TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity". Proc. Natl. Acad. Sci. U.S.A. 108 (20): 8485–8490. doi:10.1073/pnas.1103029108. PMC 3101002. PMID 21525407. 
  157. ^ Richard RA (1999). "Route of Administration". Chapter 5—Medical Aspects of Stimulant Use Disorders. National Center for Biotechnology Information Bookshelf. Treatment Improvement Protocol 33. Substance Abuse and Mental Health Services Administration. 
  158. ^ a b c "Vyvanse Prescribing Information" (PDF). United States Food and Drug Administration. Shire US Inc. January 2015. pp. 12–13. Retrieved 24 February 2015. 
  159. ^ "Compound Summary". p-Hydroxyamphetamine. PubChem Compound. National Center for Biotechnology Information. Retrieved 15 October 2013. 
  160. ^ "Compound Summary". p-Hydroxynorephedrine. PubChem Compound. National Center for Biotechnology Information. Retrieved 15 October 2013. 
  161. ^ "Compound Summary". Phenylpropanolamine. PubChem Compound. National Center for Biotechnology Information. Retrieved 15 October 2013. 
  162. ^ a b c d e Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375. 
  163. ^ "Amphetamine Hydrochloride". Pubchem Compound. National Center for Biotechnology Information. Retrieved 8 November 2013. 
  164. ^ "Amphetamine Phosphate". Pubchem Compound. National Center for Biotechnology Information. Retrieved 8 November 2013. 
  165. ^ Brussee J, Jansen ACA (May 1983). "A highly stereoselective synthesis of s(−)-[1,1'-binaphthalene]-2,2'-diol". Tetrahedron Lett. 24 (31): 3261–3262. doi:10.1016/S0040-4039(00)88151-4. 
  166. ^ a b "Compound Summary". Amphetamine. DrugBank. University of Alberta. 8 February 2013. Retrieved 30 September 2013. 
  167. ^ a b Schep LJ, Slaughter RJ, Beasley DM (August 2010). "The clinical toxicology of metamfetamine". Clin. Toxicol. (Phila.) 48 (7): 675–694. doi:10.3109/15563650.2010.516752. ISSN 1556-3650. PMID 20849327. 
  168. ^ "Amphetamine, Methamphetamine, & Cystal Meth". Addiction Prevention Centre. Retrieved 10 October 2013. 
  169. ^ a b c d "Historical overview of methamphetamine". Vermont Department of Health. Government of Vermont. Retrieved 29 January 2012. 
  170. ^ a b Allen A, Cantrell TS (August 1989). "Synthetic reductions in clandestine amphetamine and methamphetamine laboratories: A review". Forensic Science International 42 (3): 183–199. doi:10.1016/0379-0738(89)90086-8. 
  171. ^ a b Allen A, Ely R (April 2009). "Review: Synthetic Methods for Amphetamine" (PDF). Crime Scene (Northwest Association of Forensic Scientists) 37 (2): 15–25. Retrieved 6 December 2014. 
  172. ^ Patrick TM, McBee ET, Hass HB (June 1946). "Synthesis of arylpropylamines; from allyl chloride". J. Am. Chem. Soc. 68: 1009–1011. doi:10.1021/ja01210a032. PMID 20985610. 
  173. ^ Ritter JJ, Kalish J (December 1948). "A new reaction of nitriles; synthesis of t-carbinamines". J. Am. Chem. Soc. 70 (12): 4048–4050. doi:10.1021/ja01192a023. PMID 18105933. 
  174. ^ Krimen LI, Cota DJ (March 2011). "The Ritter Reaction". Organic Reactions 17: 216. doi:10.1002/0471264180.or017.03. 
  175. ^ US patent 2413493, Bitler WP, Flisik AC, Leonard N, "Synthesis of isomer-free benzyl methyl acetoacetic methyl ester", published 31 December 1946, assigned to Kay Fries Chemicals Inc 
  176. ^ Collins M, Salouros H, Cawley AT, Robertson J, Heagney AC, Arenas-Queralt A (June 2010). "δ13C and δ2H isotope ratios in amphetamine synthesized from benzaldehyde and nitroethane". Rapid Commun. Mass Spectrom. 24 (11): 1653–1658. doi:10.1002/rcm.4563. PMID 20486262. 
  177. ^ a b c d "Recommended methods of the identification and analysis of amphetamine, methamphetamine, and their ring-substituted analogues in seized materials" (PDF). United Nations Office on Drugs and Crime. United Nations. 2006. pp. 9–12. Retrieved 14 October 2013. 
  178. ^ Pollard CB, Young DC (May 1951). "The Mechanism of the Leuckart Reaction". J. Org. Chem. 16 (5): 661–672. doi:10.1021/jo01145a001. 
  179. ^ US patent 2276508, Nabenhauer FP, "Method for the separation of optically active alpha-methylphenethylamine", published 17 March 1942, assigned to Smith Kline French 
  180. ^ a b Gray DL (2007). "Approved Treatments for Attention Deficit Hyperactivity Disorder: Amphetamine (Adderall), Methylphenidate (Ritalin), and Atomoxetine (Straterra)". In Johnson DS, Li JJ. The Art of Drug Synthesis. New York, USA: Wiley-Interscience. p. 247. ISBN 9780471752158. 
  181. ^ Kraemer T, Maurer HH (August 1998). "Determination of amphetamine, methamphetamine and amphetamine-derived designer drugs or medicaments in blood and urine". J. Chromatogr. B Biomed. Sci. Appl. 713 (1): 163–187. doi:10.1016/S0378-4347(97)00515-X. PMID 9700558. 
  182. ^ Kraemer T, Paul LD (August 2007). "Bioanalytical procedures for determination of drugs of abuse in blood". Anal. Bioanal. Chem. 388 (7): 1415–1435. doi:10.1007/s00216-007-1271-6. PMID 17468860. 
  183. ^ Goldberger BA, Cone EJ (July 1994). "Confirmatory tests for drugs in the workplace by gas chromatography-mass spectrometry". J. Chromatogr. A 674 (1–2): 73–86. doi:10.1016/0021-9673(94)85218-9. PMID 8075776. 
  184. ^ a b "Clinical Drug Testing in Primary Care" (PDF). Substance Abuse and Mental Health Services Administration. Technical Assistance Publication Series 32. United States Department of Health and Human Services. 2012. Retrieved 31 October 2013. 
  185. ^ a b c d e Paul BD, Jemionek J, Lesser D, Jacobs A, Searles DA (September 2004). "Enantiomeric separation and quantitation of (±)-amphetamine, (±)-methamphetamine, (±)-MDA, (±)-MDMA, and (±)-MDEA in urine specimens by GC-EI-MS after derivatization with (R)-(−)- or (S)-(+)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (MTPA)". J. Anal. Toxicol. 28 (6): 449–455. doi:10.1093/jat/28.6.449. PMID 15516295. 
  186. ^ "LABEL: VICKS VAPOINHALER- levmetamfetamine inhalant". DailyMed. National Institutes of Health, National Library of Medicine. June 2010. Retrieved 3 April 2015. 
  187. ^ a b Verstraete AG, Heyden FV (August 2005). "Comparison of the sensitivity and specificity of six immunoassays for the detection of amphetamines in urine". J. Anal. Toxicol. 29 (5): 359–364. doi:10.1093/jat/29.5.359. PMID 16105261. 
  188. ^ Baselt RC (2011). Disposition of Toxic Drugs and Chemicals in Man (9th ed.). Seal Beach, USA: Biomedical Publications. pp. 85–88. ISBN 9780962652387. 
  189. ^ a b Musshoff F (February 2000). "Illegal or legitimate use? Precursor compounds to amphetamine and methamphetamine". Drug Metab. Rev. 32 (1): 15–44. doi:10.1081/DMR-100100562. PMID 10711406. 
  190. ^ a b Cody JT (May 2002). "Precursor medications as a source of methamphetamine and/or amphetamine positive drug testing results". J. Occup. Environ. Med. 44 (5): 435–450. doi:10.1097/00043764-200205000-00012. PMID 12024689. 
  191. ^ a b c d Mohan J, ed. (June 2014). "World Drug Report 2014" (PDF). United Nations Office on Drugs and Crime. p. 3. Retrieved 18 August 2014. 
  192. ^ Rassool GH (2009). Alcohol and Drug Misuse: A Handbook for Students and Health Professionals. London, England: Routledge. p. 113. ISBN 9780203871171. 
  193. ^ a b Sulzer D, Sonders MS, Poulsen NW, Galli A (April 2005). "Mechanisms of neurotransmitter release by amphetamines: a review". Prog. Neurobiol. 75 (6): 406–433. doi:10.1016/j.pneurobio.2005.04.003. PMID 15955613. 
  194. ^ Rasmussen N (August 2011). "Medical science and the military: the Allies' use of amphetamine during World War II". J. Interdiscip. Hist. 42 (2): 205–233. doi:10.1162/JINH_a_00212. PMID 22073434. 
  195. ^ Defalque RJ, Wright AJ (April 2011). "Methamphetamine for Hitler's Germany: 1937 to 1945". Bull. Anesth. Hist. 29 (2): 21–24, 32. PMID 22849208. 
  196. ^ "Controlled Substances Act". United States Food and Drug Administration. 11 June 2009. Retrieved 4 November 2013. 
  197. ^ Gyenis A. "Forty Years of On the Road 1957–1997". wordsareimportant.com. DHARMA beat. Archived from the original on 14 February 2008. Retrieved 18 March 2008. 
  198. ^ Wilson A (2008). "Mixing the Medicine: The unintended consequence of amphetamine control on the Northern Soul Scene" (PDF). Internet Journal of Criminology. Retrieved 25 May 2013. 
  199. ^ Hill J (4 June 2004). "Paul Erdos, Mathematical Genius, Human (In That Order)" (PDF). untruth.org. Retrieved 2 November 2013. 
  200. ^ a b c "European drug report 2014: Trends and developments" (PDF). Lisbon, Portugal: European Monitoring Centre for Drugs and Drug Addiction. May 2014. pp. 13, 24. doi:10.2810/32306. ISSN 2314-9086. Retrieved 18 August 2014. 1.2 million or 0.9% of young adults (15–34) used amphetamines in the last year 
  201. ^ United Nations Office on Drugs and Crime (2007). Preventing Amphetamine-type Stimulant Use Among Young People: A Policy and Programming Guide (PDF). New York, USA: United Nations. ISBN 9789211482232. Retrieved 11 November 2013. 
  202. ^ "List of psychotropic substances under international control" (PDF). International Narcotics Control Board. United Nations. August 2003. Archived from the original (PDF) on 5 December 2005. Retrieved 19 November 2005. 
  203. ^ Park Jin-seng (25 May 2012). "Moving to Korea brings medical, social changes". The Korean Times. Retrieved 14 November 2013. 
  204. ^ "Importing or Bringing Medication into Japan for Personal Use". Japanese Ministry of Health, Labour and Welfare. 1 April 2004. Retrieved 3 November 2013. 
  205. ^ "Controlled Drugs and Substances Act". Canadian Justice Laws Website. Government of Canada. 11 November 2013. Retrieved 11 November 2013. 
  206. ^ "Opiumwet". wetten.overheid.nl. Government of the Netherlands. 3 April 2015. Retrieved 3 April 2015. 
  207. ^ "Table of controlled Narcotic Drugs under the Thai Narcotics Act" (PDF). Thailand Food and Drug Administration. 22 May 2013. Retrieved 11 November 2013. 
  208. ^ "Class A, B and C drugs". Home Office, Government of the United Kingdom. Archived from the original on 4 August 2007. Retrieved 23 July 2007. 
  209. ^ a b c "Identification". Lisdexamfetamine. Drugbank. University of Alberta. 8 February 2013. Retrieved 13 October 2013. 

External links