Jump to content

Comparison of orbital launch systems: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Launch systems by country: Updated stats following Ariane 5 retirement
redesigned upcoming rockets to make it look better and SS-520 was a technological experiment so it only launched successfully once therefore it is retired
Tags: references removed Visual edit
Line 312: Line 312:
| {{nts|1500}}<ref name=csf-kz11>{{cite web |url=https://www.chinaspaceflight.com/rocket/KZ-11/KZ-11.html |title=快舟十一号小型固体运载火箭(KZ-11):推迟到2018年首飞 |language=zh |trans-title=Kuaizhou 11 small solid launch vehicle (KZ-11): First flight planned for 2018 |date=October 30, 2017 |access-date=March 10, 2018 |archive-date=July 27, 2018 |archive-url=https://web.archive.org/web/20180727145721/https://www.chinaspaceflight.com/rocket/KZ-11/KZ-11.html |url-status=dead }}</ref>
| {{nts|1500}}<ref name=csf-kz11>{{cite web |url=https://www.chinaspaceflight.com/rocket/KZ-11/KZ-11.html |title=快舟十一号小型固体运载火箭(KZ-11):推迟到2018年首飞 |language=zh |trans-title=Kuaizhou 11 small solid launch vehicle (KZ-11): First flight planned for 2018 |date=October 30, 2017 |access-date=March 10, 2018 |archive-date=July 27, 2018 |archive-url=https://web.archive.org/web/20180727145721/https://www.chinaspaceflight.com/rocket/KZ-11/KZ-11.html |url-status=dead }}</ref>
|
|
| {{nts|1000}} to SSO<ref name="csr-kuaizhou">{{cite web |title=Kuai Zhou (Fast Vessel) |url=https://chinaspacereport.com/launch-vehicles/kuaizhou/ |url-status=dead |archive-url=https://web.archive.org/web/20180311141059/https://chinaspacereport.com/launch-vehicles/kuaizhou/ |archive-date=March 11, 2018 |access-date=March 10, 2018 |website=China Space Report |df=mdy-all}}</ref>
| {{nts|1000}} to SSO<ref name=csr-kuaizhou />
| {{nts|2}}
| {{nts|2}}
| 2020
| 2020
Line 684: Line 684:


|-
|-
|[[SpaceX Starship|Starship]]<ref name="sx20190930" />(expendable)
|[[SpaceX Starship|Starship]]<ref name="sx20190930">{{cite web |title=Starship |url=https://www.spacex.com/starship |url-status=live |archive-url=https://web.archive.org/web/20190930163150/https://www.spacex.com/starship |archive-date=30 September 2019 |access-date=1 October 2019 |work=SpaceX}}</ref>(expendable)
|{{USA}}
|{{USA}}
|[[SpaceX]]
|[[SpaceX]]
|{{nts|250,000}}<ref name=":10" />
|{{nts|250,000}}<ref name=":10">{{Cite web |title=SpaceX |url=http://www.spacex.com/ |access-date=2023-02-10 |website=SpaceX |language=en}}</ref>
|
|
|
|
Line 704: Line 704:
| 2022<ref>{{cite news | url=https://www.theguardian.com/science/live/2022/nov/16/artemis-1-nasa-rocket-launch-moon-mission-space-live-updates | title=NASA Artemis 1 launch: Rocket lifts off on moon mission – as it happened | newspaper=The Guardian | date=16 November 2022 | last1=Lock | first1=Samantha }}</ref>
| 2022<ref>{{cite news | url=https://www.theguardian.com/science/live/2022/nov/16/artemis-1-nasa-rocket-launch-moon-mission-space-live-updates | title=NASA Artemis 1 launch: Rocket lifts off on moon mission – as it happened | newspaper=The Guardian | date=16 November 2022 | last1=Lock | first1=Samantha }}</ref>
| 2022
| 2022

|-
| [[SS-520]]
| {{JAP}}
| [[IHI Aerospace]]
| {{nts|4}}<ref name=gsp-ss520>{{cite web |url=http://space.skyrocket.de/doc_lau/ss-520.htm |title=SS-520 |website=Gunter's Space Page |first=Gunter |last=Krebs |access-date=5 November 2017}}</ref>
|
|
| {{nts|2}}<ref>{{cite news |last1=Graham |first1=William |title=Japanese sounding rocket claims record-breaking orbital launch |url=https://www.nasaspaceflight.com/2018/02/japanese-rocket-record-borbital-launch/ |work=[[NASASpaceFlight]] |date=3 February 2018 |access-date=3 February 2018}}</ref>
| 2017<ref>{{cite news |url=http://spaceflight101.com/ss-520-4-rocket-launches-on-experimental-mission/ |title=Experimental Launch of World's Smallest Orbital Space Rocket ends in Failure |work=Spaceflight 101 |date=14 January 2017 |access-date=5 November 2017}}</ref>{{efn|A prior version of the SS-520 flew twice as a suborbital sounding rocket in 1998 and 2000. In 2017, the addition of a small third stage enabled orbital launches of ultra-light [[nanosatellite|nano-]] or [[picosatellite]]s.<ref name=gsp-ss520 />}}
| 2018
|-
|-
| [[Small Satellite Launch Vehicle|SSLV]]
| [[Small Satellite Launch Vehicle|SSLV]]
Line 784: Line 773:


== Upcoming rockets ==
== Upcoming rockets ==
'''Upcoming North American launch vehicles'''

{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
|-
! rowspan=2 width=120 | Vehicle
! rowspan="2" width="120" | Vehicle
! rowspan=2 | Origin
! rowspan="2" | Origin
! rowspan=2 | Manufacturer
! rowspan="2" | Manufacturer
! colspan=3 | Payload mass to ... (kg)
! colspan="3" | Payload mass to ... (kg)
! rowspan=2 | Date of first flight
! rowspan="2" | Date of first flight
|-
|-
! [[Low Earth orbit|LEO]]
! [[Low Earth orbit|LEO]]
Line 798: Line 787:


|-
|-
| [[Agnibaan]]
| {{IND}}
| [[AgniKul Cosmos]]
| {{nts|100}}
|
|
| 2023<ref>{{Cite web |date=2022-12-26 |title=5 Indian space startups to watch in 2023 |url=https://www.techcircle.in/2022/12/26/the-five-most-important-space-startups-to-watch-in-2023 |access-date=2022-12-29 |website=Techcircle |language=en-US}}</ref>

|-
| [[Amur (launch vehicle)|Amur (Soyuz-7)]]
| {{RUS}}
| [[Progress Rocket Space Centre|JSC SRC Progress]]
| {{nts|10500}}<ref name=ars20201007/>
| 2,600
| 4,700 to SSO
| 2026<ref name=ars20201007>{{cite news |last=Berger|first=Eric |url=https://arstechnica.com/science/2020/10/russian-space-corporation-unveils-planned-amur-rocket-and-it-looks-familiar/ |title=Russian space corporation unveils planned "Amur" rocket—and it looks familiar |work=[[Ars Technica]] |date=7 October 2020 |access-date=7 October 2020}}</ref>

|-
| [[Antares 330]]
| [[Antares 330]]
| {{USA}}
| {{USA}}
| [[Northrop Grumman]]<br/>[[Firefly Aerospace]]{{efn|provides the first stage, including engines}}
| [[Northrop Grumman]]/
[[Firefly Aerospace]]{{efn|provides the first stage, including engines}}
| {{nts|8000|prefix=>&nbsp;}}<ref>{{Cite web |title=Northrop Grumman Teams with Firefly Aerospace to Develop Antares Rocket Upgrade and New Medium Launch Vehicle |url=https://news.northropgrumman.com/news/releases/northrop-grumman-teams-with-firefly-aerospace-to-develop-antares-rocket-upgrade-and-new-medium-launch-vehicle |access-date=2022-08-08 |website=Northrop Grumman Newsroom |language=en}}</ref><!-- "> 8000" assessment is derived from the ref. statement "This new stage will also significantly increase Antares mass to orbit capability." (exact quote) and the capability of Antares 230+ -->
| {{nts|8000|prefix=>&nbsp;}}<ref>{{Cite web |title=Northrop Grumman Teams with Firefly Aerospace to Develop Antares Rocket Upgrade and New Medium Launch Vehicle |url=https://news.northropgrumman.com/news/releases/northrop-grumman-teams-with-firefly-aerospace-to-develop-antares-rocket-upgrade-and-new-medium-launch-vehicle |access-date=2022-08-08 |website=Northrop Grumman Newsroom |language=en}}</ref><!-- "> 8000" assessment is derived from the ref. statement "This new stage will also significantly increase Antares mass to orbit capability." (exact quote) and the capability of Antares 230+ -->
|
|
|
|
| 2024
| 2024

|-
| [[Ariane 6]] A62
| {{flag|Europe}}
| [[ArianeGroup]]
| {{nts|10,350}}<ref name="ariane6-manual">{{cite web |url=http://www.arianespace.com/wp-content/uploads/2018/04/Mua-6_Issue-1_Revision-0_March-2018.pdf |title=Ariane 6 User's Manual Issue 1 Revision 0 |last=Lagier |first=Roland |publisher=[[Arianespace]] |date=March 2018 |access-date=27 May 2018 |archive-date=11 November 2020 |archive-url=https://web.archive.org/web/20201111191731/https://www.arianespace.com/wp-content/uploads/2018/04/Mua-6_Issue-1_Revision-0_March-2018.pdf |url-status=dead }}</ref>{{rp|45}}
| {{nts|5,000}}<ref name=ariane6-manual />{{rp|33}}
| {{nts|6,450}} to SSO <br/> {{nts|3,000}} to HEO <br/> {{nts|3,000}} to TLI <ref name=ariane6-manual />{{rp|40–49}}
| 2024<ref name=":11">{{Cite web |last=Berger |first=Eric |date=2023-05-12 |title=The Ariane 6 rocket will now debut no earlier than the spring of 2024 |url=https://arstechnica.com/science/2023/05/the-ariane-6-rockets-debut-will-slip-into-2024-the-question-is-how-far/ |access-date=2023-05-16 |website=Ars Technica |language=en-us}}</ref>

|-
| [[Ariane 6]] A64
| {{flag|Europe}}
| [[ArianeGroup]]
| {{nts|21,650}}<ref name=ariane6-manual />{{rp|46}}
| {{nts|11,500}}+ <ref name=ariane6-manual />{{rp|33}}
| {{nobr|{{nts|14,900}} to SSO}} <br/> {{nts|5,000}} to GEO <br/> {{nts|8,400}} to HEO <br/> {{nts|8,500}} to TLI <ref name=ariane6-manual />{{rp|40–49}}
| 2024<ref name=":11" />
|-
|-
|Aurora
|Aurora
Line 849: Line 803:
|
|
|2024
|2024
|-
|Aventura 1
|{{Flagicon|Argentina}} [[Argentina]]
|TLON Space
|25
|
|
|2023
|-
| [[Bloostar]]
| {{ESP}}
| [[Zero 2 Infinity]]
| {{nts|140}}<ref name="Bloostar-PUG">{{cite web |publisher=Zero 2 Infinity |title=Bloostar Launch Vehicle Payload User's Guide |url=http://www.zero2infinity.space/wp-content/uploads/2018/01/Z2I-BS-TN-1-0316-R2-Bloostar-Payload-User-Guide.pdf |id=Z2I-BS-TN-1-0316-R2 |version=Revision 2 |date=January 2018 |access-date=4 September 2018}}</ref>
|
| {{nts|75}} to SSO<ref name="Bloostar-PUG"/>
| {{abbr|TBA|To be announced}}

|-
| [[Blue Whale 1]]
| {{KOR}}
| [[Perigee Aerospace]]
|150 [https://perigee.space/mission/]
|
| 170 to SSO
| 2024
|-
|Cosmos
|{{RUS}}
|[[SR space]]
|100
|
|
|TBD
|-
| [[Cyclone-4M]]
| {{UKR}}
| [[Yuzhnoye Design Office|Yuzhnoye]] <br /> [[Yuzhmash]]
| {{nts|5000}}<ref name="spaceq-20170314">{{cite news |url=https://spaceq.ca/maritime-launch-services-selects-nova-scotia-site-for-spaceport-over-13-other-locations/ |title=Exclusive: Maritime Launch Services Selects Nova Scotia Site for Spaceport Over 13 Other Locations |work=SpaceQ |first=Marc |last=Boucher |date=14 March 2017 |access-date=18 March 2017}}</ref>
| {{nts|1000}}<ref name="GSP-Cyclone">{{cite web |url=http://space.skyrocket.de/doc_lau/tsiklon-4m.htm |title=Tsiklon-4M (Cyclone-4M) |first=Gunter |last=Krebs |website=Gunter's Space Page |access-date=11 April 2017}}</ref>
| {{nts|3350}} to SSO<ref name="spaceq-20170314" />
| 2025<ref>{{Cite web |title=Precious Payload allies with Maritime Launch + adds Canada's 1st commercial spaceport to the Launch.ctrl marketplace for smallsat interests – SatNews |url=https://news.satnews.com/2022/12/09/precious-payload-allies-with-maritime-launch-adds-canadas-1st-commercial-spaceport-to-the-launch-ctrl-marketplace-for-smallsat-interests/ |access-date=2022-12-29 |website=news.satnews.com}}</ref>
|-
|-
|C6 Launch Vehicle
|C6 Launch Vehicle
Line 906: Line 819:
|
|
|2023
|2023
|-
|Darwin-1
|{{CHN}}
|Rocket Pi
|470
|
|
|
|-
|-
|Dauntless
|Dauntless
Line 923: Line 828:
|2024
|2024
|-
|-
|Laguna
| DNLV
| {{MYS}}
|{{USA}}
|[[Phantom Space Corporation|Phantom Space]]
| [[Independence-X Aerospace]]
| {{nts|200}}
|630-1,200
|
|
|
|
|TBA
| 2025<ref>{{Cite web |title=LAUNCH SERVICES |url=http://www.independence-x.com/launch-services.html |access-date=2022-12-29 |website=Independence-X Aerospace |language=en}}</ref>
|-
|-
|[[Firefly Aerospace#MLV|MLV]]
|[[Epsilon S]]
|{{USA}}
|{{Flagicon|Japan}} [[Japan]]
|[[JAXA]]
|[[Firefly Aerospace]]
|{{nts|14000}}
|1,400
|
|
|2025<ref>{{cite web |title=Medium Launch Vehicle |url=https://fireflyspace.com/mlv/ |access-date=11 March 2023 |work=Firefly Aerospace}}</ref>
|-
|[[Rocket Lab Neutron|Neutron]]
|{{USA}}<br />{{NZL}}
|[[Rocket Lab]]
|{{nts|8000}}
|
|
|2024<ref name=":3">{{cite web |date=2021-03-01 |title=JP Introducing Neutron |url=https://www.youtube.com/watch?v=agqxJw5ISdk |url-status=live |archive-url=https://ghostarchive.org/varchive/youtube/20211212/agqxJw5ISdk |archive-date=2021-12-12 |access-date=2021-03-01 |website=[[YouTube]]}}{{cbignore}}</ref>
|-
|[[New Glenn]]
|{{nobr|{{USA}}}}
|[[Blue Origin]]
|{{nts|45,000}}<ref name="spacenews-20170308">{{cite news |last=Foust |first=Jeff |date=8 March 2017 |title=Eutelsat first customer for Blue Origin's New Glenn |work=[[SpaceNews]] |url=http://spacenews.com/eutelsat-first-customer-for-blue-origins-new-glenn/ |access-date=8 March 2017}}</ref>
|{{nts|13,000}}
|
|2024
|-
|Rocket 4
|{{Flagicon|USA}} [[USA]]
|[[Astra (American spaceflight company)|Astra]]
|600
|
|
|
|600 to SSO
|2023
|2023
|-
|-
|[[Space Launch System|SLS Block 1B]]{{efn|with [[Exploration Upper Stage|EUS]]}}
| [[Eris (rocket)|Eris]]
| {{AUS}}
|{{USA}}
|[[NASA]] / [[Boeing]] <br /> [[Northrop Grumman]]
| [[Gilmour Space Technologies]]
| {{nts|305}}<ref name="LAUNCH">{{Cite web|title=LAUNCH|url=https://www.gspacetech.com/launch|access-date=2021-05-29|website=Gilmour Space|language=en}}</ref>
|{{nts|105,000}}<ref name="slsfact-20171011">{{cite web |date=11 October 2017 |title=Space Launch System |url=https://www.nasa.gov/sites/default/files/atoms/files/sls_fact_sheet_final_10112017.pdf |access-date=4 September 2018 |series=NASA Facts |publisher=[[NASA]] |id=FS-2017-09-92-MSFC}}</ref>
|
|
|{{nts|37,000}} to TLI<ref name="NASA-SLS">{{cite web |last=Harbaugh |first=Jennifer |date=9 July 2018 |title=The Great Escape: SLS Provides Power for Missions to the Moon |url=https://www.nasa.gov/exploration/systems/sls/to-the-moon.html |access-date=4 September 2018 |publisher=[[NASA]]}}</ref>
|208
|-
|[[Space Launch System|SLS Block 2]]{{efn|with [[Exploration Upper Stage|EUS]] and <br/> advanced boosters}}
|{{USA}}
|[[NASA]] / [[Boeing]] <br /> [[Northrop Grumman]]
|{{nts|130,000}}<ref name="creech-2014">{{cite web |last=Creech |first=Stephen |date=April 2014 |title=NASA's Space Launch System: A Capability for Deep Space Exploration |url=https://www.nasa.gov/sites/default/files/files/Creech_SLS_Deep_Space.pdf |access-date=4 September 2018 |publisher=[[NASA]] |page=2}}</ref>
|
|
|{{nts|45,000}} to HCO<ref name="NASA-SLS" />
| 2023<ref>{{cite press release |url=https://www.gspacetech.com/post/gilmour-space-announces-first-caravan-rideshare-mission-to-leo |title=Gilmour Space announces first 'Caravan' rideshare mission to LEO |work=[[Gilmour Space Technologies]] |date=19 September 2022 |access-date=19 September 2022 |quote=[The company] is expecting to launch its first Eris vehicle from the Bowen Orbital Spaceport in Queensland, Australia, early next year.}}</ref>
|2033
|-
|-
|[[SpaceX Starship|Starship]]<ref name="sx20190930" /><br /> (Single launch, reusable)
|[[Eris (rocket)|Eris]] Block 2
|{{AUS}}
|{{USA}}
|[[SpaceX]]
|[[Gilmour Space Technologies]]
|{{nts|150,000}}<ref name="merged1">{{cite tweet|number=1245063992361406464|user=elonmusk|title=@Erdayastronaut @SpaceX @flightclubio Mass of initial SN ships will be a little high &amp; Isp a little low, but, over time, it will be ~150t to LEO fully reusable|first=Elon|last=Musk|author-link=Elon Musk|date=31 March 2020|access-date=20 March 2023|language=en|archive-url=https://web.archive.org/web/20221208094841/https://twitter.com/elonmusk/status/1245063992361406464|archive-date=8 December 2022|url-status=live}}</ref><ref name=":10" />
|1,000
|{{nts|21,000}}<ref name=":2">{{cite web |title=Starship Users Guide |url=https://www.spacex.com/media/starship_users_guide_v1.pdf |access-date=1 April 2020 |website=spacex.com}}</ref>
|
|
|TBA
|-
|[[SpaceX Starship|Starship]]<ref name="sx20190930" /><br /> (Additional refuelling launches)
|{{USA}}
|[[SpaceX]]
|{{nts|100,000}}+<ref name="sx20190930" /><ref name="merged1" />
|{{nts|100,000}}+<br /><ref name="sx20190930" />
|{{nts|100,000}}+ to Mars surface<ref name="sx20190930" /><br />{{nts|100,000}}+ to lunar surface<ref name="sx20190930" />
|TBA
|-
|[[Terran R]]
|{{USA}}
|[[Relativity Space]]
|{{nts|33,500}}<ref name="relativity-20230412">{{cite press release |url=https://www.relativityspace.com/press-release/2023/4/12/terran-r |title=Relativity Space Shares Updated Go-to-Market Approach for Terran R, Taking Aim at Medium to Heavy Payload Category with Next-Generation Rocket |work=[[Relativity Space]] |date=12 April 2023 |access-date=12 April 2023}}</ref>
|{{nts|5,500}}<ref name="relativity-20230412" />
|
|
|2026<ref name="relativity-20230412" />
|2024
|-
|[[Vector-R]]
|{{USA}}
|[[Vector Launch]]
|60
|
|26 to SSO
|TBA
|-
|[[Vulcan (rocket)|Vulcan]] / [[Centaur (rocket stage)|Centaur]]
|{{USA}}
|[[United Launch Alliance|ULA]]
|{{nts|27200}}<ref name="ULA_tech_sheet">{{cite web |date=November 2019 |title=Rocket Rundown – A Fleet Overview |url=https://www.ulalaunch.com/docs/default-source/rockets/atlas-v-and-delta-iv-technical-summary.pdf |access-date=April 14, 2020 |work=[[United Launch Alliance|ULA]]}}</ref>
|{{nts|14400}}<ref name="ULA_tech_sheet" />
|7,200 to GEO<ref name="ULA_tech_sheet" /> <br />12,100 to TLI
|2023<ref>{{Cite web |title=ULA Sets Path Forward for Inaugural Vulcan Flight Test |url=https://www.ulalaunch.com/about/news/2022/10/12/ula-sets-path-forward-for-inaugural-vulcan-flight-test |access-date=2022-10-14 |website=www.ulalaunch.com}}</ref>
|}
'''Upcoming Chinese launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
! rowspan="2" width="120" | Vehicle
! rowspan="2" | Origin
! rowspan="2" | Manufacturer
! colspan="3" | Payload mass to ... (kg)
! rowspan="2" | Date of first flight
|-
! [[Low Earth orbit|LEO]]
! [[Geostationary transfer orbit|GTO]]
! Other

|-
| Darwin-1
| {{CHN}}
| Rocket Pi
| 470
|
|
| 2024
|-
|-
|Gravity-1
|Gravity-1
Line 969: Line 960:
|5,800
|5,800
|10,900 to SSO
|10,900 to SSO
|2024
|-
|Hyperbola-2
|{{CHN}}
|[[i-Space (Chinese company)|i-Space]]
|{{nts|2,000}}<ref name="spacenews-20180515" />
|
|
|
|2023<ref name="sn-20220706" />
|-
|-
|[[Long March 9]]
|Hanbit-Nano
|{{CHN}}
|{{Flagicon|South Korea}} [[South Korea]]
|[[China Academy of Launch Vehicle Technology|CALT]]
|Innospace
|{{nts|150,000}}<ref name="spacenewslongmarch9">{{cite news |last=Jones |first=Andrew |date=28 June 2021 |title=China's super heavy rocket to construct space-based solar power station |url=https://spacenews.com/chinas-super-heavy-rocket-to-construct-space-based-solar-power-station/ |access-date=8 January 2022}}</ref>
|50
|{{nts|66,000}}<ref name="xn-20180702">{{cite web |date=2 July 2018 |title=China to develop new series of carrier rockets: expert |url=http://www.xinhuanet.com/english/2018-07/02/c_137295940.htm |url-status=dead |archive-url=https://web.archive.org/web/20180702104534/http://www.xinhuanet.com/english/2018-07/02/c_137295940.htm |archive-date=July 2, 2018 |access-date=25 September 2018 |website=Xinhua.net}}</ref>
|{{nts|53,000}} to TLI<ref name="spacenewslongmarch9" /> <br /> {{nts|40,000}} to TMI<ref name="spacenews-20180705">{{cite news |last=Jones |first=Andrew |date=5 July 2018 |title=China reveals details for super-heavy-lift Long March 9 and reusable Long March 8 rockets |work=[[SpaceNews]] |url=https://spacenews.com/china-reveals-details-for-super-heavy-lift-long-march-9-and-reusable-long-march-8-rockets/ |access-date=4 September 2018}}</ref>
|2033
|-
|[[Long March 10]]
|{{CHN}}
|[[China Academy of Launch Vehicle Technology|CALT]]
|70,000
|
|27,000 to TLI
|2027
|-
|Nebula-1
|{{CHN}}
|[[Deep Blue Aerospace]]
|1,000
|
|
|
|
|2024
|2024
|-
|-
|[[New Line 1]] <br /> <ref name="popsci-20171218">{{cite magazine |last1=Lin |first1=Jeffrey |last2=Singer |first2=P.W. |date=18 December 2017 |title=China could become a major space power by 2050 |url=https://www.popsci.com/china-space-power-plans |magazine=[[Popular Science]] |access-date=4 September 2018}}</ref>
|HAPITH V
|{{CHN}}
|{{Flagicon|Taiwan}} [[Taiwan]]
|[[LinkSpace]]
{{AUS}}
|[[TiSPACE]]
|390
|
|
|
|
|{{nts|{{cvt|440|lb|kg|disp=number}}}} to SSO<ref name="popsci-20171218" />
|TBA
|TBA
|-
|[[OneSpace#Rockets|OS-M2]]
|{{CHN}}
|[[OneSpace]]
|{{nts|390}}<ref name="spacetechasia-20180705" />
|
|{{nts|292}} to SSO
|{{abbr|TBA|To be announced}}
|-
|[[Pallas-1]]
|{{China}}
|[[Galactic Energy]]
|{{nts|5000}}
|
|{{nts|3000}} to SSO
|2024<ref name="launch date">{{cite tweet|number=1612449239786786816|user=CNSpaceflight|title=GAPACTIC-ENERGY's another important goal is to develop the reusable kerosene fueled rocket PALLAS-1, which is now targeted in 2024 for first launch https://t.co/TMrTZ6ZD8D https://t.co/xPKe0mVIBB|author=China 'N Asia Spaceflight 🚀🛰️🙏|date=9 January 2023|access-date=20 March 2023|language=en|archive-url=https://web.archive.org/web/20230111125155/https://twitter.com/CNSpaceflight/status/1612449239786786816|archive-date=11 January 2023|url-status=live}}</ref>
|}
'''Upcoming European launch vehicles (without Russian launch vehicles)'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
! rowspan="2" width="120" | Vehicle
! rowspan="2" | Origin
! rowspan="2" | Manufacturer
! colspan="3" | Payload mass to ... (kg)
! rowspan="2" | Date of first flight
|-
! [[Low Earth orbit|LEO]]
! [[Geostationary transfer orbit|GTO]]
! Other

|-
| [[Ariane 6]] A62
| {{flag|Europe}}
| [[ArianeGroup]]
| {{nts|10,350}}<ref name="ariane6-manual">{{cite web |last=Lagier |first=Roland |date=March 2018 |title=Ariane 6 User's Manual Issue 1 Revision 0 |url=http://www.arianespace.com/wp-content/uploads/2018/04/Mua-6_Issue-1_Revision-0_March-2018.pdf |url-status=dead |archive-url=https://web.archive.org/web/20201111191731/https://www.arianespace.com/wp-content/uploads/2018/04/Mua-6_Issue-1_Revision-0_March-2018.pdf |archive-date=11 November 2020 |access-date=27 May 2018 |publisher=[[Arianespace]]}}</ref>{{rp|45}}
| {{nts|5,000}}<ref name="ariane6-manual" />{{rp|33}}
| {{nts|6,450}} to SSO <br /> {{nts|3,000}} to HEO <br /> {{nts|3,000}} to TLI <ref name="ariane6-manual" />{{rp|40–49}}
| 2024<ref name=":11">{{Cite web |last=Berger |first=Eric |date=2023-05-12 |title=The Ariane 6 rocket will now debut no earlier than the spring of 2024 |url=https://arstechnica.com/science/2023/05/the-ariane-6-rockets-debut-will-slip-into-2024-the-question-is-how-far/ |access-date=2023-05-16 |website=Ars Technica |language=en-us}}</ref>
|-
|[[Ariane 6]] A64
|{{flag|Europe}}
|[[ArianeGroup]]
|{{nts|21,650}}<ref name="ariane6-manual" />{{rp|46}}
|{{nts|11,500}}+ <ref name="ariane6-manual" />{{rp|33}}
|{{nobr|{{nts|14,900}} to SSO}} <br /> {{nts|5,000}} to GEO <br /> {{nts|8,400}} to HEO <br /> {{nts|8,500}} to TLI <ref name="ariane6-manual" />{{rp|40–49}}
|2024<ref name=":11" />
|-
|[[Cyclone-4M]]
|{{UKR}}
|[[Yuzhnoye Design Office|Yuzhnoye]] <br /> [[Yuzhmash]]
|{{nts|5000}}<ref name="spaceq-20170314">{{cite news |last=Boucher |first=Marc |date=14 March 2017 |title=Exclusive: Maritime Launch Services Selects Nova Scotia Site for Spaceport Over 13 Other Locations |work=SpaceQ |url=https://spaceq.ca/maritime-launch-services-selects-nova-scotia-site-for-spaceport-over-13-other-locations/ |access-date=18 March 2017}}</ref>
|{{nts|1000}}<ref name="GSP-Cyclone">{{cite web |last=Krebs |first=Gunter |title=Tsiklon-4M (Cyclone-4M) |url=http://space.skyrocket.de/doc_lau/tsiklon-4m.htm |access-date=11 April 2017 |website=Gunter's Space Page}}</ref>
|{{nts|3350}} to SSO<ref name="spaceq-20170314" />
|2025<ref>{{Cite web |title=Precious Payload allies with Maritime Launch + adds Canada's 1st commercial spaceport to the Launch.ctrl marketplace for smallsat interests – SatNews |url=https://news.satnews.com/2022/12/09/precious-payload-allies-with-maritime-launch-adds-canadas-1st-commercial-spaceport-to-the-launch-ctrl-marketplace-for-smallsat-interests/ |access-date=2022-12-29 |website=news.satnews.com}}</ref>
|-
|-
|Hera II
|Hera II
Line 996: Line 1,064:
|2024
|2024
|-
|-
|[[Miura 5]]
| Hyperbola-2
| {{CHN}}
|{{ESP}}
| [[i-Space (Chinese company)|i-Space]]
|[[PLD Space]]
|{{nts|900}}
| {{nts|2,000}}<ref name=spacenews-20180515 />
|
|
|{{nts|450}} to SSO
|
|2024<ref>{{cite web |date=11 August 2020 |title=PLD Space, la ambición de lanzar satélites con cohetes reutilizables |trans-title=PLD Space, and the ambition to launch satellites with reusable rockets |url=https://cincodias.elpais.com/cincodias/2020/08/10/companias/1597060934_744408.html |access-date=17 August 2020 |work=[[El País]] |language=es}}</ref>
| 2023<ref name="sn-20220706"/>
|-
|-
|[[Orbex#Prime|Prime]]
|Kairos
|{{JPN}}
|{{UK}}
|[[Orbex]]
|Space One
|{{nts|220}}<ref>{{cite web |title=About us |url=https://orbex.space/about-us |access-date=4 September 2018 |publisher=Orbex |quote=Orbex can accommodate a range of payload capacities between 100kg-220kg, to altitudes of between 200km-1250km.}}</ref>
|100
|
|
|{{nts|150}} to SSO{{efn|name=500km|Reference altitude 500 km}}<ref name="spacenews-prime">{{cite news |last=Foust |first=Jeff |date=18 July 2018 |title=Orbex stakes claim to European smallsat launch market |work=[[SpaceNews]] |url=https://spacenews.com/orbex-stakes-claim-to-european-smallsat-launch-market/ |access-date=4 September 2018}}</ref>
|2023<ref>{{Cite web |last=Foust |first=Jeff |date=2022-10-18 |title=Orbex raises Series C round |url=https://spacenews.com/orbex-raises-series-c-round/ |access-date=2022-10-19 |website=SpaceNews |language=en-US}}</ref>
|-
|RFA One
|{{GER}}
|[[Rocket Factory Augsburg AG]]
|{{nts|1,600}}<ref name=":5">{{Cite web |title=LAUNCHER – Rocket Factory Augsburg |url=https://www.rfa.space/launcher/ |access-date=2021-09-18 |language=en-US}}</ref>
|{{nts|450}}<ref name=":5" />
|
|
|2024<ref name="expr-20230624">{{cite web |date=24 June 2023 |title=Shetland’s SaxaVord spaceport will soon be launching satellites into orbit |url=https://www.express.co.uk/news/science/1783992/Shetland-SaxaVord-spaceport-launching-satellites |access-date=25 June 2023 |work=Express}}</ref>
|2023
|-
|-
| [[Kuaizhou 21]]
|[[Skyrora XL]]
| {{CHN}}
|{{UK}}
| [[ExPace]]
|[[Skyrora]]
|{{Nts|335}}<ref name=":9">{{Cite web |title=Skyrora XL Rocket {{!}} Skyrora |url=https://www.skyrora.com/skyrora-xl#section-5 |access-date=2022-08-19 |website=www.skyrora.com}}</ref>
| {{nts|20,000}}<ref name=chinadaily-20171225>{{cite news |url=http://www.china.org.cn/china/2017-12/25/content_50161133.htm |title= China to test large solid-fuel rocket engine |work=[[China Daily]] |date=December 25, 2017 |access-date=March 10, 2018}}</ref>
|
|
|{{Nts|315}} to SSO<ref name=":9" />
|
|2024
| 2025<ref name=csr-kuaizhou>{{cite web |url=https://chinaspacereport.com/launch-vehicles/kuaizhou/ |title=Kuai Zhou (Fast Vessel) |website=China Space Report |access-date=March 10, 2018 |archive-url=https://web.archive.org/web/20180311141059/https://chinaspacereport.com/launch-vehicles/kuaizhou/ |archive-date=March 11, 2018 |url-status=dead |df=mdy-all }}</ref>
|-
|-
|SL1
|KSLV-III
|{{GER}}
|{{Flagicon|South Korea}} [[South Korea]]
|[[KARI]]
|[[HyImpulse]]
|500
|10,000
|3,700
|1,800 to TLI
|2030
|-
|Laguna
|{{USA}}
|[[Phantom Space Corporation|Phantom Space]]
|630-1,200
|
|
|
|
|2025
|TBA
|-
|-
|Spectrum
| [[Long March 9]]
| {{CHN}}
|{{GER}}
|[[Isar Aerospace]]
| [[China Academy of Launch Vehicle Technology|CALT]]
|{{nts|1,000}}<ref name=":8">{{Cite web |title=Spectrum |url=https://www.isaraerospace.com/spectrum |access-date=2022-03-05 |website=Isar Aerospace |language=en}}</ref>
| {{nts|150,000}}<ref name=spacenewslongmarch9>{{cite news |url=https://spacenews.com/chinas-super-heavy-rocket-to-construct-space-based-solar-power-station/ |title=China's super heavy rocket to construct space-based solar power station |first=Andrew |last=Jones |date=28 June 2021 |access-date=8 January 2022}}</ref>
| {{nts|66,000}}<ref name=xn-20180702>{{cite web |url=http://www.xinhuanet.com/english/2018-07/02/c_137295940.htm |archive-url=https://web.archive.org/web/20180702104534/http://www.xinhuanet.com/english/2018-07/02/c_137295940.htm |url-status=dead |archive-date=July 2, 2018 |title=China to develop new series of carrier rockets: expert |website=Xinhua.net |date=2 July 2018 |access-date=25 September 2018}}</ref>
| {{nts|53,000}} to TLI<ref name=spacenewslongmarch9 /> <br/> {{nts|40,000}} to TMI<ref name=spacenews-20180705>{{cite news |url=https://spacenews.com/china-reveals-details-for-super-heavy-lift-long-march-9-and-reusable-long-march-8-rockets/ |title=China reveals details for super-heavy-lift Long March 9 and reusable Long March 8 rockets |work=[[SpaceNews]] |first=Andrew |last=Jones |date=5 July 2018 |access-date=4 September 2018}}</ref>
| 2033
|-
|[[Long March 10]]
|{{CHN}}
|[[China Academy of Launch Vehicle Technology|CALT]]
|70,000
|
|
|700 to SSO<ref name=":8" />
|27,000 to TLI
|2023<ref name=":6">{{Cite web |date=10 August 2022 |title=German Launch Providers Isar Aerospace and RFA Eye Maiden Launches in 2023 – Parabolic Arc |url=http://www.parabolicarc.com/2022/08/09/german-launch-providers-isar-aerospace-and-rfa-eye-maiden-launches-in-2023/ |access-date=2022-08-13 |language=en-US}}</ref>
|2027
|-
|-
| [[Miura 5]]
|[[Vega (rocket)|Vega E]]
| {{ESP}}
|{{flag|Europe}}
|[[European Space Agency|ESA]] / [[Italian Space Agency|ASI]]
| [[PLD Space]]
|{{nts|3000}}<ref>{{cite web |title=Vega E: M10 motor / Mira |url=http://www.avio.com/en/vega/vega-e/vega-e-mira-motor/ |url-status=dead |archive-url=https://web.archive.org/web/20190419181644/http://www.avio.com/en/vega/vega-e/vega-e-mira-motor/ |archive-date=19 April 2019 |access-date=7 June 2018 |publisher=[[Avio]]}}</ref>
| {{nts|900}}
|
| {{nts|450}} to SSO
| 2024<ref>{{cite web |url=https://cincodias.elpais.com/cincodias/2020/08/10/companias/1597060934_744408.html |title=PLD Space, la ambición de lanzar satélites con cohetes reutilizables |trans-title=PLD Space, and the ambition to launch satellites with reusable rockets |work=[[El País]] |date=11 August 2020 |access-date=17 August 2020 |language=es}}</ref>

|-
| [[Firefly Aerospace#MLV|MLV]]
| {{USA}}
| [[Firefly Aerospace]]
| {{nts|14000}}
|
|
| 2025<ref>{{cite web |url=https://fireflyspace.com/mlv/ |title=Medium Launch Vehicle |work=Firefly Aerospace |access-date=11 March 2023}}</ref>
|-
|Nebula-1
|{{CHN}}
|[[Deep Blue Aerospace]]
|1,000
|
|
|
|
|
|2026
|-
|-
|Zephyr
| [[Rocket Lab Neutron|Neutron]]
|{{Flagicon|France}} [[France]]
| {{USA}}<br/>{{NZL}}
|Latitude
| [[Rocket Lab]]
|72
| {{nts|8000}}
|
|
| 2024<ref>{{cite web|url=https://www.youtube.com/watch?v=agqxJw5ISdk |archive-url=https://ghostarchive.org/varchive/youtube/20211212/agqxJw5ISdk| archive-date=2021-12-12 |url-status=live|title=JP Introducing Neutron|website=[[YouTube]]|date=2021-03-01|access-date=2021-03-01}}{{cbignore}}</ref>

|-
| [[New Glenn]]
| {{nobr|{{USA}}}}
| [[Blue Origin]]
| {{nts|45,000}}<ref name=spacenews-20170308>{{cite news |url=http://spacenews.com/eutelsat-first-customer-for-blue-origins-new-glenn/ |title=Eutelsat first customer for Blue Origin's New Glenn |work=[[SpaceNews]] |first=Jeff |last=Foust |date=8 March 2017 |access-date=8 March 2017}}</ref>
| {{nts|13,000}}
|
| 2023<ref name="sn-20220323">{{cite web |last=Foust |first=Jeff |url=https://spacenews.com/vulcan-centaur-on-schedule-for-first-launch-in-2022-as-new-glenn-slips/ |title=Vulcan Centaur on schedule for first launch in 2022 as New Glenn slips |work=[[SpaceNews]] |date=23 March 2022 |access-date=24 March 2022}}</ref>

|-
| [[New Line 1]] <br/> <ref name="popsci-20171218">{{cite magazine|last1=Lin|first1=Jeffrey|last2=Singer|first2=P.W.|date=18 December 2017|title=China could become a major space power by 2050|url=https://www.popsci.com/china-space-power-plans|magazine=[[Popular Science]]|access-date=4 September 2018}}</ref>
| {{CHN}}
| [[LinkSpace]]
|
|
| {{nts|{{cvt|440|lb|kg|disp=number}}}} to SSO<ref name=popsci-20171218 />
| TBA

|-
| [[OneSpace#Rockets|OS-M2]]
| {{CHN}}
| [[OneSpace]]
| {{nts|390}}<ref name=spacetechasia-20180705 />
|
| {{nts|292}} to SSO
| {{abbr|TBA|To be announced}}
|-
|[[Qaem 100 (rocket)|Qaem-100]]
|{{IRI}}
|[[Islamic Revolutionary Guard Corps]]
|80<ref>{{Cite web |title=IRGC Launches Satellite Carrier into Space - Politics news |url=https://www.tasnimnews.com/en/news/2022/11/05/2799456/irgc-launches-satellite-carrier-into-space |access-date=2022-11-07 |website=Tasnim News Agency |language=en}}</ref>
|
|
|
|
|2024
|TBA
|}

'''Upcoming Russian launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
|-
! rowspan="2" width="120" | Vehicle
| [[Pallas-1]]
! rowspan="2" | Origin
| {{China}}
! rowspan="2" | Manufacturer
| [[Galactic Energy]]
! colspan="3" | Payload mass to ... (kg)
| {{nts|5000}}
! rowspan="2" | Date of first flight
|
| {{nts|3000}} to SSO
| 2024<ref name="launch date">{{cite tweet |author=China 'N Asia Spaceflight 🚀🛰️🙏 |user=CNSpaceflight |number=1612449239786786816 |date=9 January 2023 |title=GAPACTIC-ENERGY's another important goal is to develop the reusable kerosene fueled rocket PALLAS-1, which is now targeted in 2024 for first launch https://t.co/TMrTZ6ZD8D https://t.co/xPKe0mVIBB |language=en |access-date=20 March 2023 |archive-url=https://web.archive.org/web/20230111125155/https://twitter.com/CNSpaceflight/status/1612449239786786816 |archive-date=11 January 2023 |url-status=live}}</ref>

|-
|-
| [[Orbex#Prime|Prime]]
! [[Low Earth orbit|LEO]]
! [[Geostationary transfer orbit|GTO]]
| {{UK}}
! Other
| [[Orbex]]
| {{nts|220}}<ref>{{cite web |url=https://orbex.space/about-us |title=About us |publisher=Orbex |access-date=4 September 2018 |quote=Orbex can accommodate a range of payload capacities between 100kg-220kg, to altitudes of between 200km-1250km.}}</ref>
|
| {{nts|150}} to SSO{{efn|name=500km|Reference altitude 500 km}}<ref name=spacenews-prime>{{cite news |url=https://spacenews.com/orbex-stakes-claim-to-european-smallsat-launch-market/ |title=Orbex stakes claim to European smallsat launch market |work=[[SpaceNews]] |first=Jeff |last=Foust |date=18 July 2018 |access-date=4 September 2018}}</ref>
| 2023<ref>{{Cite web |last=Foust |first=Jeff |date=2022-10-18 |title=Orbex raises Series C round |url=https://spacenews.com/orbex-raises-series-c-round/ |access-date=2022-10-19 |website=SpaceNews |language=en-US}}</ref>


|-
| [[Amur (launch vehicle)|Amur (Soyuz-7)]]
| {{RUS}}
| [[Progress Rocket Space Centre|JSC SRC Progress]]
| {{nts|10500}}<ref name="ars20201007">{{cite news |last=Berger |first=Eric |date=7 October 2020 |title=Russian space corporation unveils planned "Amur" rocket—and it looks familiar |work=[[Ars Technica]] |url=https://arstechnica.com/science/2020/10/russian-space-corporation-unveils-planned-amur-rocket-and-it-looks-familiar/ |access-date=7 October 2020}}</ref>
| 2,600
|4,700 to SSO
| 2026<ref name="ars20201007" />
|-
|-
|Cosmos
| RFA One
| {{GER}}
|{{RUS}}
|[[SR space]]
| [[Rocket Factory Augsburg AG]]
|100
| {{nts|1,600}}<ref name=":5">{{Cite web|title=LAUNCHER – Rocket Factory Augsburg|url=https://www.rfa.space/launcher/|access-date=2021-09-18|language=en-US}}</ref>
| {{nts|450}}<ref name=":5" />
|
| 2024<ref name="expr-20230624">{{cite web |url=https://www.express.co.uk/news/science/1783992/Shetland-SaxaVord-spaceport-launching-satellites |title=Shetland’s SaxaVord spaceport will soon be launching satellites into orbit |date=24 June 2023 |access-date=25 June 2023 |work=Express}}</ref>
|-
|Rocket 4
|{{Flagicon|USA}} [[USA]]
|[[Astra (American spaceflight company)|Astra]]
|600
|
|
|
|
|TBD
|2023
|-
|-
|[[Rokot|Rokot-M]]
|[[Rokot|Rokot-M]]
Line 1,163: Line 1,166:
|2024
|2024
|-
|-
|[[Irtysh (rocket)|Irtysh (Soyuz-5)]]
|[[Skyrora XL]]
|{{UK}}
|{{RUS}}
|[[TsSKB-Progress]]<br />[[RSC Energia]]
|[[Skyrora]]
|{{Nts|335}}<ref name=":9">{{Cite web |title=Skyrora XL Rocket {{!}} Skyrora |url=https://www.skyrora.com/skyrora-xl#section-5 |access-date=2022-08-19 |website=www.skyrora.com}}</ref>
|{{nts|18,000}}<ref name="soyuz-5-perf">{{cite web |last=Zak |first=Anatoly |date=7 August 2017 |title=Preliminary design for Soyuz-5 races to completion |url=http://www.russianspaceweb.com/soyuz5-lv-2017.html |access-date=2 September 2018 |website=Russian Space Web}}</ref>
|
|
|{{Nts|315}} to SSO<ref name=":9" />
|{{nts|2,500}} to GEO
|2023<ref>{{Cite web |title=Second stage static fire engine test moves Skyrora closer to UK launch {{!}} SKYRORA |url=https://www.skyrora.com/post/second-stage-static-fire-engine-test-moves-skyrora-closer-to-uk-launch |access-date=2022-08-19 |website=www.skyrora.com}}</ref>
|2024<ref>{{cite web |date=30 January 2023 |title=Первый пуск "Союза-5" запланировали на 2024 год |trans-title=First launch of Soyuz-5 scheduled for 2024 |url=https://tass.ru/kosmos/16918711 |access-date=30 January 2023 |work=[[TASS]] |language=ru}}</ref>
|-
|-
| [[Irtysh (rocket)|Soyuz-5 / Irtysh]]
|[[Soyuz-6|Volga (Soyuz-6)]]
| {{RUS}}
| [[TsSKB-Progress]]<br/>[[RSC Energia]]
| {{nts|18,000}}<ref name=soyuz-5-perf>{{cite web |url=http://www.russianspaceweb.com/soyuz5-lv-2017.html |title=Preliminary design for Soyuz-5 races to completion |website=Russian Space Web |first=Anatoly |last=Zak |date=7 August 2017 |access-date=2 September 2018}}</ref>
|
| {{nts|2,500}} to GEO
| 2024<ref>{{cite web |url=https://tass.ru/kosmos/16918711 |title=Первый пуск "Союза-5" запланировали на 2024 год |trans-title=First launch of Soyuz-5 scheduled for 2024 |work=[[TASS]] |date=30 January 2023 |access-date=30 January 2023 |language=ru}}</ref>
|-
|[[Soyuz-6]]
|{{RUS}}
|{{RUS}}
|[[TsSKB-Progress]]
|[[TsSKB-Progress]]
Line 1,188: Line 1,182:
|2025
|2025
|-
|-
|Stalker
|SL1
|{{GER}}
|{{RUS}}
|[[HyImpulse]]
|[[SR space]]
|500
|950
|
|
|
|
|2024
|2025
|-
|-
|[[Yenisei (rocket)|Yenisei]]<ref name="zak-yenisei">{{cite web |last=Zak |first=Anatoly |date=19 February 2019 |title=The Yenisei super-heavy rocket |url=http://www.russianspaceweb.com/superheavy.html |access-date=20 February 2019 |work=RussianSpaceWeb}}</ref>
| [[Space Launch System|SLS Block 1B]]{{efn|with [[Exploration Upper Stage|EUS]]}}
| {{USA}}
|{{RUS}}
| [[NASA]] / [[Boeing]] <br/> [[Northrop Grumman]]
|[[TsSKB-Progress]]<br />[[RSC Energia]]
| {{nts|105,000}}<ref name=slsfact-20171011>{{cite web |url=https://www.nasa.gov/sites/default/files/atoms/files/sls_fact_sheet_final_10112017.pdf |title=Space Launch System |series=NASA Facts |publisher=[[NASA]] |date=11 October 2017 |access-date=4 September 2018 |id=FS-2017-09-92-MSFC}}</ref>
|{{nts|88,000}} – 115,000<ref name="tass-20180123">{{cite news |date=23 January 2018 |title=Russia to launch super-heavy rocket to Moon in 2032–2035 |agency=[[TASS]] |url=http://tass.com/science/986450 |access-date=6 June 2018}}</ref>
|
|
|{{nts|27,000}} to TLI<ref name="energia-5v">{{cite web |last=Zak |first=Anatoly |date=24 November 2017 |title=Russia charts new roadmap to super-heavy rocket |url=http://www.russianspaceweb.com/superheavy-2017.html |access-date=6 June 2018 |website=Russian Space Web}}</ref><ref name="popmech-20190208">{{cite news |last=Zak |first=Anatoly |date=8 February 2019 |title=Russia Is Now Working on a Super Heavy Rocket of Its Own |work=[[Popular Mechanics]] |url=https://www.popularmechanics.com/space/rockets/a16761777/russia-super-heavy-rocket/ |access-date=20 February 2019}}</ref><ref>{{Cite news |date=24 April 2019 |title=Roscosmos unveils characteristics of super-heavy rockets for flights to the Moon (In Russian) |work=RIA NOVOSTI |url=https://ria.ru/20190424/1553021395.html}}</ref>
| {{nts|37,000}} to TLI<ref name=NASA-SLS>{{cite web |url=https://www.nasa.gov/exploration/systems/sls/to-the-moon.html |title=The Great Escape: SLS Provides Power for Missions to the Moon |publisher=[[NASA]] |first=Jennifer |last=Harbaugh |date=9 July 2018 |access-date=4 September 2018}}</ref>
|2030s
| 2027<ref name="sn-20221030">{{cite web |last=Foust |first=Jeff |url=https://spacenews.com/lunar-landing-restored-for-artemis-4-mission/ |title=Lunar landing restored for Artemis 4 mission |work=[[SpaceNews]] |date=30 October 2022 |access-date=15 December 2022}}</ref>
|}

'''Upcoming Indian launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
|-
! rowspan="2" width="120" | Vehicle
| [[Space Launch System|SLS Block 2]]{{efn|with [[Exploration Upper Stage|EUS]] and <br/> advanced boosters}}
! rowspan="2" | Origin
| {{USA}}
! rowspan="2" | Manufacturer
| [[NASA]] / [[Boeing]] <br/> [[Northrop Grumman]]
! colspan="3" | Payload mass to ... (kg)
| {{nts|130,000}}<ref name=creech-2014>{{cite web |first=Stephen |last=Creech |publisher=[[NASA]] |url=https://www.nasa.gov/sites/default/files/files/Creech_SLS_Deep_Space.pdf |title=NASA's Space Launch System: A Capability for Deep Space Exploration |page=2 |date=April 2014 |access-date=4 September 2018}}</ref>
! rowspan="2" | Date of first flight
|
|-
| {{nts|45,000}} to HCO<ref name=NASA-SLS />
! [[Low Earth orbit|LEO]]
| data-sort-value=2029|late 2020s (TBD)
! [[Geostationary transfer orbit|GTO]]
! Other


|-
| [[Agnibaan]]
| {{IND}}
| [[AgniKul Cosmos]]
| {{nts|100}}
|
|
| 2023<ref>{{Cite web |date=2022-12-26 |title=5 Indian space startups to watch in 2023 |url=https://www.techcircle.in/2022/12/26/the-five-most-important-space-startups-to-watch-in-2023 |access-date=2022-12-29 |website=Techcircle |language=en-US}}</ref>
|-
|-
|[[Vikram 1]]<ref name="Launch Vehicle">{{Cite web |date=2019-01-10 |title=Launch Vehicle |url=https://skyroot.in/launch-vehicle/ |url-status=dead |archive-url=https://web.archive.org/web/20201215065720/https://skyroot.in/launch-vehicle/ |archive-date=2020-12-15 |access-date=2019-04-21 |website=Skyroot Aerospace |language=en-US}}</ref>
|Spectrum
|{{GER}}
|{{IND}}
|[[Skyroot Aerospace]]<ref>{{Cite web |title=Skyroot Aerospace |url=https://skyroot.in/ |access-date=2019-04-21 |website=Skyroot Aerospace |language=en-US}}</ref>
|[[Isar Aerospace]]
|{{nts|315}} to 45º inclination 500&nbsp;km LEO
|{{nts|1,000}}<ref name=":8">{{Cite web |title=Spectrum |url=https://www.isaraerospace.com/spectrum |access-date=2022-03-05 |website=Isar Aerospace |language=en}}</ref>
|
|
|{{nts|200}} to 500&nbsp;km SSPO
|700 to SSO<ref name=":8" />
|2023<ref name=":6">{{Cite web |title=German Launch Providers Isar Aerospace and RFA Eye Maiden Launches in 2023 Parabolic Arc |date=10 August 2022 |url=http://www.parabolicarc.com/2022/08/09/german-launch-providers-isar-aerospace-and-rfa-eye-maiden-launches-in-2023/ |access-date=2022-08-13 |language=en-US}}</ref>
|2023<ref>{{Cite web |title=Skyroot Aerospace's Mission Prarambh: A closer look at India's first private rocket launch |url=https://www.moneycontrol.com/news/business/skyroot-aerospaces-mission-prarambh-a-closer-look-at-indias-first-private-rocket-launch-9474891.html |access-date=2022-11-11 |website=Moneycontrol |language=en}}</ref>
|-
|-
|[[Skyroot Aerospace|Vikram 2]]<ref name="Launch Vehicle" />
|Stalker
|{{RUS}}
|{{IND}}
|[[SR space]]
|[[Skyroot Aerospace]]
|{{nts|520}} to 45º inclination 500&nbsp;km LEO
|950
|
|
|{{nts|410}} to 500&nbsp;km SSPO
|{{abbr|TBA|To be announced}}
|-
|[[Skyroot Aerospace|Vikram 3]]<ref name="Launch Vehicle" />
|{{IND}}
|[[Skyroot Aerospace]]
|{{nts|720}} to 45º inclination 500&nbsp;km LEO
|
|
|{{nts|580}} to 500&nbsp;km SSPO
|2024
|{{abbr|TBA|To be announced}}
|}
'''Upcoming Japanese and Taiwanese launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
|-
! rowspan="2" width="120" | Vehicle
| [[SpaceX Starship|Starship]]<ref name="sx20190930">{{cite web |title=Starship |work=SpaceX |url=https://www.spacex.com/starship |access-date=1 October 2019 |archive-url=https://web.archive.org/web/20190930163150/https://www.spacex.com/starship |archive-date=30 September 2019 |url-status=live}}</ref><br/> (Single launch, reusable)
! rowspan="2" | Origin
| {{USA}}
! rowspan="2" | Manufacturer
| [[SpaceX]]
! colspan="3" | Payload mass to ... (kg)
| {{nts|150,000}}<ref name="merged1">{{cite tweet |last=Musk |first=Elon |author-link=Elon Musk |user=elonmusk |number=1245063992361406464 |date=31 March 2020 |title=@Erdayastronaut @SpaceX @flightclubio Mass of initial SN ships will be a little high &amp; Isp a little low, but, over time, it will be ~150t to LEO fully reusable |language=en |access-date=20 March 2023 |archive-url=https://web.archive.org/web/20221208094841/https://twitter.com/elonmusk/status/1245063992361406464 |archive-date=8 December 2022 |url-status=live}}</ref><ref name=":10">{{Cite web |title=SpaceX |url=http://www.spacex.com/ |access-date=2023-02-10 |website=SpaceX |language=en}}</ref>
! rowspan="2" | Date of first flight
| {{nts|21,000}}<ref name=":2">{{cite web |title=Starship Users Guide |url=https://www.spacex.com/media/starship_users_guide_v1.pdf |website=spacex.com |access-date=1 April 2020}}</ref>
|
|-
! [[Low Earth orbit|LEO]]
| 2023 (orbital) <ref>{{Cite web |last=Berger |first=Eric |date=2022-12-09 |title=Rocket Report: Starship flight test slips to 2023; first methane launch is imminent |url=https://arstechnica.com/science/2022/12/rocket-report-first-uk-launch-slips-to-2023-ukrainian-rocket-startup-perseveres/ |access-date=2022-12-29 |website=Ars Technica |language=en-us}}</ref>
! [[Geostationary transfer orbit|GTO]]
! Other


|-
| [[Epsilon S]]
| {{Flagicon|Japan}} [[Japan]]
| [[JAXA]]
| 1,400
|
|600 to SSO
| 2023
|-
|-
|Kairos
| [[SpaceX Starship|Starship]]<ref name="sx20190930"/><br/> (Additional refuelling launches)
| {{USA}}
|{{JPN}}
|Space One
| [[SpaceX]]
|100
| {{nts|100,000}}+<ref name="sx20190930"/><ref name="merged1"/>
|
| {{nts|100,000}}+<br/><ref name="sx20190930"/>
|
| {{nts|100,000}}+ to Mars surface<ref name="sx20190930"/><br/>{{nts|100,000}}+ to lunar surface<ref name="sx20190930"/>
|2023
| 2023 (TBD)<ref name=":7">{{Cite web |date=2021-12-28 |title=FAA delays completion of Starship environmental review |url=https://spacenews.com/faa-delays-completion-of-starship-environmental-review/ |access-date=2022-01-02 |website=SpaceNews |language=en-US}}</ref>
|-
|-
| [[Terran R]]
|[[Zero (rocket)|Zero]]
| {{USA}}
|{{JPN}}
|[[Interstellar Technologies]]
| [[Relativity Space]]
|
| {{nts|33,500}}<ref name="relativity-20230412">{{cite press release |url=https://www.relativityspace.com/press-release/2023/4/12/terran-r |title=Relativity Space Shares Updated Go-to-Market Approach for Terran R, Taking Aim at Medium to Heavy Payload Category with Next-Generation Rocket |work=[[Relativity Space]] |date=12 April 2023 |access-date=12 April 2023}}</ref>
| {{nts|5,500}}<ref name="relativity-20230412" />
|
|
|{{nts|100}} to SSO{{efn|name=500km}}<ref name="spacenews-zero">{{cite news |last=Werner |first=Debra |date=9 August 2018 |title=Japan's Interstellar Technologies goes full throttle toward small orbital rocket |work=[[SpaceNews]] |url=https://spacenews.com/japans-interstellar-technologies-goes-full-throttle-toward-small-orbital-rocket/ |access-date=11 August 2018}}</ref>
| 2026<ref name="relativity-20230412" />
|2023<ref>{{cite web |last1=Yamanaka |first1=Hirofumi |last2=Kugai |first2=Shoko |date=27 May 2020 |title=LNG-powered rocket offers boost to Japan's private space industry |url=https://asia.nikkei.com/Business/Aerospace-Defense/LNG-powered-rocket-offers-boost-to-Japan-s-private-space-industry |access-date=30 April 2021 |work=[[Nikkei Asia]]}}</ref>
|-
|-
|HAPITH V
|[[Vector-R]]
|{{Flagicon|Taiwan}} [[Taiwan]]
|{{USA}}
{{AUS}}
|[[Vector Launch]]
|[[TiSPACE]]
|60
|390
|
|
|
|26 to SSO
|TBA
|TBA
|}
'''Upcoming South American launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
|-
! rowspan="2" width="120" | Vehicle
| [[Vega (rocket)|Vega E]]
! rowspan="2" | Origin
| {{flag|Europe}}
! rowspan="2" | Manufacturer
| [[European Space Agency|ESA]] / [[Italian Space Agency|ASI]]
! colspan="3" | Payload mass to ... (kg)
| {{nts|3000}}<ref>{{cite web |url=http://www.avio.com/en/vega/vega-e/vega-e-mira-motor/ |title=Vega E: M10 motor / Mira |publisher=[[Avio]] |access-date=7 June 2018 |archive-date=19 April 2019 |archive-url=https://web.archive.org/web/20190419181644/http://www.avio.com/en/vega/vega-e/vega-e-mira-motor/ |url-status=dead }}</ref>
! rowspan="2" | Date of first flight
|
|
|-
! [[Low Earth orbit|LEO]]
| 2025<ref>{{cite web |last=Henry |first=Caleb |url=https://spacenews.com/avio-anticipating-vega-c-upgrade-funding-at-esa-ministerial-vega-return-to-flight-in-march/ |title=Avio anticipating Vega C upgrade funding at ESA ministerial, Vega return to flight in March |work=[[SpaceNews]] |date=7 November 2019 |access-date=17 August 2020}}</ref>
! [[Geostationary transfer orbit|GTO]]
! Other


|-
|-
| Aventura 1
| [[Vikram 1]]<ref name="Launch Vehicle">{{Cite web|url=https://skyroot.in/launch-vehicle/|title=Launch Vehicle|date=2019-01-10|website=Skyroot Aerospace|language=en-US|access-date=2019-04-21|archive-date=2020-12-15|archive-url=https://web.archive.org/web/20201215065720/https://skyroot.in/launch-vehicle/|url-status=dead}}</ref>
| {{Flagicon|Argentina}} [[Argentina]]
| {{IND}}
| TLON Space
| [[Skyroot Aerospace]]<ref>{{Cite web|url=https://skyroot.in/|title=Skyroot Aerospace|website=Skyroot Aerospace|language=en-US|access-date=2019-04-21}}</ref>
| 25
| {{nts|315}} to 45º inclination 500&nbsp;km LEO
|
|
|
| {{nts|200}} to 500&nbsp;km SSPO
| 2024
| 2023<ref>{{Cite web |title=Skyroot Aerospace's Mission Prarambh: A closer look at India's first private rocket launch |url=https://www.moneycontrol.com/news/business/skyroot-aerospaces-mission-prarambh-a-closer-look-at-indias-first-private-rocket-launch-9474891.html |access-date=2022-11-11 |website=Moneycontrol |language=en}}</ref>
|-
| [[Skyroot Aerospace|Vikram 2]]<ref name="Launch Vehicle"/>
| {{IND}}
| [[Skyroot Aerospace]]
| {{nts|520}} to 45º inclination 500&nbsp;km LEO
|
| {{nts|410}} to 500&nbsp;km SSPO
| {{abbr|TBA|To be announced}}
|-
| [[Skyroot Aerospace|Vikram 3]]<ref name="Launch Vehicle"/>
| {{IND}}
| [[Skyroot Aerospace]]
| {{nts|720}} to 45º inclination 500&nbsp;km LEO
|
| {{nts|580}} to 500&nbsp;km SSPO
| {{abbr|TBA|To be announced}}
|-
|-
|[[VLM (rocket)|VLM]]
|[[VLM (rocket)|VLM]]
Line 1,303: Line 1,320:
|
|
|2025
|2025
|}
'''Upcoming Korean launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
! rowspan="2" width="120" | Vehicle
! rowspan="2" | Origin
! rowspan="2" | Manufacturer
! colspan="3" | Payload mass to ... (kg)
! rowspan="2" | Date of first flight
|-
! [[Low Earth orbit|LEO]]
! [[Geostationary transfer orbit|GTO]]
! Other

|-
| [[Blue Whale 1]]
| {{KOR}}
| [[Perigee Aerospace]]
| 150 [https://perigee.space/mission/]
|
|170 to SSO
| 2024
|-
|Hanbit-Nano
|{{Flagicon|South Korea}} [[South Korea]]
|Innospace
|50
|
|
|2024
|}
'''Upcoming Korean launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
! rowspan="2" width="120" | Vehicle
! rowspan="2" | Origin
! rowspan="2" | Manufacturer
! colspan="3" | Payload mass to ... (kg)
! rowspan="2" | Date of first flight
|-
! [[Low Earth orbit|LEO]]
! [[Geostationary transfer orbit|GTO]]
! Other
|-
| [[Eris (rocket)|Eris]]
| {{AUS}}
| [[Gilmour Space Technologies]]
| {{nts|305}}<ref name="LAUNCH">{{Cite web |title=LAUNCH |url=https://www.gspacetech.com/launch |access-date=2021-05-29 |website=Gilmour Space |language=en}}</ref>
|
|
| 2023<ref>{{cite press release |url=https://www.gspacetech.com/post/gilmour-space-announces-first-caravan-rideshare-mission-to-leo |title=Gilmour Space announces first 'Caravan' rideshare mission to LEO |work=[[Gilmour Space Technologies]] |date=19 September 2022 |access-date=19 September 2022 |quote=[The company] is expecting to launch its first Eris vehicle from the Bowen Orbital Spaceport in Queensland, Australia, early next year.}}</ref>
|-
|[[Eris (rocket)|Eris]] Block 2
|{{AUS}}
|[[Gilmour Space Technologies]]
|1,000
|
|
|2024
|-
|[[Rocket Lab Neutron|Neutron]]
|{{USA}}<br />{{NZL}}
|[[Rocket Lab]]
|{{nts|8000}}
|
|
|2024<ref name=":3" />
|-
|HAPITH V
|{{Flagicon|Taiwan}} [[Taiwan]]
{{AUS}}
|[[TiSPACE]]
|390
|
|
|TBA
|}
'''Upcoming Iranian launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
! rowspan="2" width="120" | Vehicle
! rowspan="2" | Origin
! rowspan="2" | Manufacturer
! colspan="3" | Payload mass to ... (kg)
! rowspan="2" | Date of first flight
|-
! [[Low Earth orbit|LEO]]
! [[Geostationary transfer orbit|GTO]]
! Other
|-
| [[Qaem 100 (rocket)|Qaem-100]]
| {{IRI}}
| [[Islamic Revolutionary Guard Corps]]
| 80<ref>{{Cite web |title=IRGC Launches Satellite Carrier into Space - Politics news |url=https://www.tasnimnews.com/en/news/2022/11/05/2799456/irgc-launches-satellite-carrier-into-space |access-date=2022-11-07 |website=Tasnim News Agency |language=en}}</ref>
|
|
| TBA
|-
|[[Zuljanah (rocket)|Zuljanah]]
|{{IRI}}
|[[Iranian Space Agency]]
|{{nts|220}}<ref name=":4">{{Cite web |last=Axe |first=David |title=Iran's New Space Rocket Could Double As A Nuclear Missile |url=https://www.forbes.com/sites/davidaxe/2021/02/01/irans-new-space-rocket-could-double-as-a-weapon/ |access-date=2021-03-08 |website=Forbes |language=en}}</ref>
|
|
|TBA
|}
'''Upcoming Singaporean launch vehicles'''
{| class="wikitable sortable" style="font-size:1.00em; line-height:1.5em;"
|-
! rowspan="2" width="120" | Vehicle
! rowspan="2" | Origin
! rowspan="2" | Manufacturer
! colspan="3" | Payload mass to ... (kg)
! rowspan="2" | Date of first flight
|-
! [[Low Earth orbit|LEO]]
! [[Geostationary transfer orbit|GTO]]
! Other
|-
|-
|Volans
|Volans (?)
|{{Flagicon|Singapore}} [[Singapore]]
|{{Flagicon|Singapore}} [[Singapore]]
|[[Equatorial Space Systems]]
|[[Equatorial Space Systems]]
Line 1,310: Line 1,445:
|
|
|
|
|TBA
|2024
|-
| [[Vulcan (rocket)|Vulcan]] / [[Centaur (rocket stage)|Centaur]]
| {{USA}}
| [[United Launch Alliance|ULA]]
| {{nts|27200}}<ref name= ULA_tech_sheet>{{cite web |url=https://www.ulalaunch.com/docs/default-source/rockets/atlas-v-and-delta-iv-technical-summary.pdf |title=Rocket Rundown – A Fleet Overview |work=[[United Launch Alliance|ULA]] |date=November 2019 |access-date=April 14, 2020}}</ref>
| {{nts|14400}}<ref name= ULA_tech_sheet/>
| 7,200 to GEO<ref name= ULA_tech_sheet/> <br/>12,100 to TLI
| 2023<ref>{{Cite web |title=ULA Sets Path Forward for Inaugural Vulcan Flight Test |url=https://www.ulalaunch.com/about/news/2022/10/12/ula-sets-path-forward-for-inaugural-vulcan-flight-test |access-date=2022-10-14 |website=www.ulalaunch.com}}</ref>

|-
| [[Yenisei (rocket)|Yenisei]]<ref name=zak-yenisei>{{cite web |url=http://www.russianspaceweb.com/superheavy.html |title=The Yenisei super-heavy rocket |work=RussianSpaceWeb |first=Anatoly |last=Zak |date=19 February 2019 |access-date=20 February 2019}}</ref>
| {{RUS}}
| [[TsSKB-Progress]]<br/>[[RSC Energia]]
| {{nts|88,000}} – 115,000<ref name=tass-20180123>{{cite news |title=Russia to launch super-heavy rocket to Moon in 2032–2035 |url=http://tass.com/science/986450 |agency=[[TASS]] |date=23 January 2018 |access-date=6 June 2018}}</ref>
|
| {{nts|27,000}} to TLI<ref name=energia-5v>{{cite web |url=http://www.russianspaceweb.com/superheavy-2017.html |title=Russia charts new roadmap to super-heavy rocket |website=Russian Space Web |first=Anatoly |last=Zak |date=24 November 2017 |access-date=6 June 2018}}</ref><ref name=popmech-20190208 /><ref>{{Cite news|date=24 April 2019|title=Roscosmos unveils characteristics of super-heavy rockets for flights to the Moon (In Russian)|work=RIA NOVOSTI|url=https://ria.ru/20190424/1553021395.html}}</ref>
| 2028<ref name=popmech-20190208>{{cite news |url=https://www.popularmechanics.com/space/rockets/a16761777/russia-super-heavy-rocket/ |title=Russia Is Now Working on a Super Heavy Rocket of Its Own |work=[[Popular Mechanics]] |first=Anatoly |last=Zak |date=8 February 2019 |access-date=20 February 2019}}</ref>
|-
|-
|Volans V500
|Zephyr
|{{Flagicon|France}} [[France]]
|{{Flagicon|Singapore}} [[Singapore]]
|[[Equatorial Space Systems]]
|Latitude
|72
|150
|
|
|
|
|2024
|2024
|-
|-
|Volans (?)
| [[Zero (rocket)|Zero]]
|{{Flagicon|Singapore}} [[Singapore]]
| {{JPN}}
|[[Equatorial Space Systems]]
| [[Interstellar Technologies]]
|
|500
|
|
|
| {{nts|100}} to SSO{{efn|name=500km}}<ref name=spacenews-zero>{{cite news |url=https://spacenews.com/japans-interstellar-technologies-goes-full-throttle-toward-small-orbital-rocket/ |title=Japan's Interstellar Technologies goes full throttle toward small orbital rocket |first=Debra |last=Werner |work=[[SpaceNews]] |date=9 August 2018 |access-date=11 August 2018}}</ref>
|TBA
| 2023<ref>{{cite web |last1=Yamanaka |first1=Hirofumi |last2=Kugai |first2=Shoko |url=https://asia.nikkei.com/Business/Aerospace-Defense/LNG-powered-rocket-offers-boost-to-Japan-s-private-space-industry |title=LNG-powered rocket offers boost to Japan's private space industry |work=[[Nikkei Asia]] |date=27 May 2020 |access-date=30 April 2021}}</ref>

|-
| [[Zuljanah (rocket)|Zuljanah]]
| {{IRI}}
| [[Iranian Space Agency]]
| {{nts|220}}<ref name=":4">{{Cite web|last=Axe|first=David|title=Iran's New Space Rocket Could Double As A Nuclear Missile|url=https://www.forbes.com/sites/davidaxe/2021/02/01/irans-new-space-rocket-could-double-as-a-weapon/|access-date=2021-03-08|website=Forbes|language=en}}</ref>
|
|
| TBA

|}
|}


Line 3,241: Line 3,349:
| 1958
| 1958
| 1958
| 1958
|-

|[[SS-520]]
|{{JAP}}
|[[IHI Aerospace]]
|{{nts|4}}<ref name="gsp-ss520">{{cite web |last=Krebs |first=Gunter |title=SS-520 |url=http://space.skyrocket.de/doc_lau/ss-520.htm |access-date=5 November 2017 |website=Gunter's Space Page}}</ref>
|
|
|{{nts|2}}<ref>{{cite news |last1=Graham |first1=William |date=3 February 2018 |title=Japanese sounding rocket claims record-breaking orbital launch |work=[[NASASpaceFlight]] |url=https://www.nasaspaceflight.com/2018/02/japanese-rocket-record-borbital-launch/ |access-date=3 February 2018}}</ref>
|2017<ref>{{cite news |date=14 January 2017 |title=Experimental Launch of World's Smallest Orbital Space Rocket ends in Failure |work=Spaceflight 101 |url=http://spaceflight101.com/ss-520-4-rocket-launches-on-experimental-mission/ |access-date=5 November 2017}}</ref>{{efn|A prior version of the SS-520 flew twice as a suborbital sounding rocket in 1998 and 2000. In 2017, the addition of a small third stage enabled orbital launches of ultra-light [[nanosatellite|nano-]] or [[picosatellite]]s.<ref name=gsp-ss520 />}}
|2018
|-
|-
| [[Start-1]]
| [[Start-1]]

Revision as of 17:48, 8 July 2023

A Falcon Heavy launch vehicle from SpaceX

This comparison of orbital launch systems lists the attributes of all individual rocket configurations designed to reach orbit. A first list contains rockets that are operational or in development as of 2022; a second list includes all retired rockets. For the simple list of all conventional launcher families, see: Comparison of orbital launchers families. For the list of predominantly solid-fueled orbital launch systems, see: Comparison of solid-fueled orbital launch systems.

Spacecraft propulsion[note 1] is any method used to accelerate spacecraft and artificial satellites. Orbital launch systems are rockets and other systems capable of placing payloads into or beyond Earth orbit. All launch vehicle propulsion systems employed to date have been chemical rockets falling into one of three main categories:

  • Solid-propellant rockets or solid-fuel rockets have a motor that uses solid propellants, typically a mix of powdered fuel and oxidizer held together by a polymer binder and molded into the shape of a hollow cylinder. The cylinder is ignited from the inside and burns radially outward, with the resulting expanding gases and aerosols escaping out via the nozzle.[note 2]
  • Liquid-propellant rockets have a motor that feeds liquid propellant(s) into a combustion chamber. Most liquid engines use a bipropellant, consisting of two liquid propellants (fuel and oxidizer) which are stored and handled separately before being mixed and burned inside the combustion chamber.
  • Hybrid-propellant rockets use a combination of solid and liquid propellant, typically involving a liquid oxidizer being pumped through a hollow cylinder of solid fuel.

All current spacecraft use conventional chemical rockets (solid-fuel or liquid bipropellant) for launch, though some[note 3] have used air-breathing engines on their first stage.[note 4]

Current rockets

Orbits legend:

Vehicle Origin Manufacturer Payload mass to ... (kg) Orbital launches incl. failures[a] Date of flight
LEO GTO Other First Latest
Alpha  United States Firefly Aerospace 1,000[1] 630 to SSO 2 2021 2022
Angara A5  Russia Khrunichev 24,000[2] 5,400 with Briz-M[2]
7,500 with KVTK
3[3] 2014 2021
Angara 1.2  Russia Khrunichev 3,500[2] 2,400 to SSO 2[4] 2022 2022
Antares 230 / 230+  United States Northrop Grumman 8,200[5] 3,000 to SSO[b] 6[6] 2016 2022
Atlas V 551  United States ULA 18,500[7] 8,700 13,550 to SSO
3,960 to GEO
12[7] 2006 2021
Atlas V N22[c]  United States ULA 13,000 2 2019[9] 2022
Ceres-1  China Galactic Energy 400[10] 300 to SSO[10] 5[11] 2020 2023
Chollima-1  North Korea NADA 300[12] 1 2023 2023
Delta IV Heavy  United States ULA 28,790[13] 14,220 23,560 to polar
11,290 to TLI
8,000 to TMI
15[14] 2004 2023
Electron  United States
 New Zealand
Rocket Lab 300[15] 200 to SSO[15] 37[16] 2017 2023
Epsilon  Japan IHI[17] 1,500[18] 590 to SSO 6[19] 2013 2019
Falcon 9 Block 5(partially reusable)  United States SpaceX 17,400 5,500 179 2017 2023
Falcon 9 Block 5(expended)  United States SpaceX 22,800 8,300 11 2018 2022
Falcon Heavy
(partially reusable)[20]
 United States SpaceX 30,000[21]–57,000[22] 8,000[23]–10,000[d] 10[25][26] 2018 2023
Falcon Heavy
(expended)
 United States SpaceX 63,800[27] 26,700[27] 16,800 to TMI[27] 1[28] 2023 2023
GSLV Mk II  India ISRO 5,000[29] 2,700[30][e] 9[31] 2010 2023
LVM 3  India ISRO 10,000[32] 4,000 2,380 to TLI 6[33] 2017[f] 2023
H-IIA 202  Japan Mitsubishi 8,000[35]: 67  4,000[35]: 48  5,100 to SSO[g]
[35]: 64–65 
31[36] 2001 2023
H3  Japan Mitsubishi [37] 6,500[38] 4,000 to SSO[39] 1 2023 2023
Hyperbola-1  China i-Space 300[40] 5[41] 2019[42][h] 2023
Jielong 1[43]  China CALT 200 (SSO) 1[43] 2019 2019
Jielong 3  China CALT 1,500 (500 km SSO) 1[44] 2022 2022
Kaituozhe-2  China CASC 800[45] 1[45] 2017 2017
Kinetica 1  China CAS Space 2,000[46] 1,500[47] TO 500 km SSO 2[48] 2022 2023
Kuaizhou 1/1A  China ExPace 400[49] 250 to SSO 22 2013[i] 2023
Kuaizhou 11  China ExPace 1,500[50] 1,000 to SSO[51] 2 2020 2022
Long March 2C  China CALT 3,850
[citation needed]
1,250 with CTS2 2,000 to SSO with YZ-1S[52] 69[53] 1982 2023
Long March 2D  China SAST 4,000 1,150 to SSO 76[53] 1992 2023
Long March 2F  China CALT 8,600 20[53] 1999 2023
Long March 3A  China CALT 6,000[54] 2,600 5,000 to SSO 27[55] 1994 2018
Long March 3B/E  China CALT 11,500[54] 5,500 6,900 to SSO 78[55] 2007 2023
Long March 3C  China CALT 9,100[54] 3,800 6,500 to SSO 18[55] 2008 2021
Long March 4B  China SAST 4,200[56] 1,500 2,800 to SSO 47[56] 1999 2022
Long March 4C  China SAST 4,200[57] 1,500 2,800 to SSO 49[56] 2006 2023
Long March 5  China CALT 14,000 [58] 15,000 to SSO[59]
9,400 to TLI[58]
6,000 to TMI[58]
5[59] 2016 2020
Long March 5B  China CALT 25,000[59] 4[59] 2020[60] 2022
Long March 6  China SAST 1,080 to SSO[61] 11[62] 2015 2023
Long March 6A  China SAST 4,000 to SSO[63] 2[62] 2022 2022
Long March 7  China CALT 13,500[64] 5,500 to SSO 7[65] 2016[66] 2023
Long March 7A  China CALT 5,500 to 7,000[60] 5[65] 2020 2023
Long March 8  China CALT 8,400 2,800 5,000 to SSO 2[67] 2020 2022
Long March 11  China CALT 700[68] 350 to SSO 16[69] 2015 2023
Minotaur I  United States Northrop Grumman 580[70] 12[71] 2000 2021
Minotaur IV  United States Northrop Grumman 1,735[72] 5[73][j] 2010 2020
Minotaur V  United States Northrop Grumman 670[73] 465 to HCO 1[73] 2013 2013
Minotaur-C (Taurus)[74]  United States Northrop Grumman 1,458[75] 1,054 to SSO[k] 10[76] 1994 2017
Nuri (KSLV-II)  South Korea KARI 2,600 1,500 to SSO[77][78] 3[78] 2021 2023
OS-M1  China OneSpace 205[79] 143 to SSO 1 2019[80][l] 2019
Pegasus  United States Northrop Grumman 500[82] 44[82][83] 1990 2019
Proton-M  Russia Khrunichev 23,000[84][85] 6,150 (M)
6,920 (M+)
115[86][87][88] 2001 2023
PSLV-CA  India ISRO 2,100[89] 1,100 to SSO 16[89] 2007 2023
PSLV-DL  India ISRO 1[89] 2019 2021
PSLV-QL  India ISRO 2[89] 2019 2019
PSLV-XL  India ISRO 3,800[89] 1,300 1,750 to SSO
550 to TMI[90]
21[89] 2008 2020
Qased  Iran Revolutionary Guard Corps (IRGC) 2 2020 2022
RS1  United States ABL Space Systems 1,350[91] 400 1,000 to SSO
750 to MEO
1 2023[92] 2023
Shavit-2  Israel IAI 400 inRetrograde 6 2007 2023
Simorgh  Iran Iranian Space Agency 350[93] 2[93][m] 2017 2019
Soyuz-2.1a  Russia TsSKB-Progress 7,020 from Baikonur[94] 60[95][96][97] 2006[n] 2023
Soyuz-2.1b  Russia TsSKB-Progress 8,200 from Baikonur[94] 2,400[98] 63[96][99] 2006 2023
Soyuz-2-1v  Russia TsSKB-Progress 2,800[100] 1,400 to SSO 10[100] 2013 2023
Starship[101](expendable)  United States SpaceX 250,000[102] 1 2023 2023
SLS Block 1  United States NASA / Boeing
Northrop Grumman
95,000[103] 27,000+ to TLI[104] 1 2022[105] 2022
SSLV  India ISRO 500[106] 300 to SSO 2[107] 2022 2023
Unha-3  North Korea KCST 200 4[108] 2009[o] 2016
Tianlong-2  China Space Pioneer 2,000[109] 1,500 to SSO 1 2023 2023
Vega  Europe ESA / ASI 1,500[p][110] 1,330 to SSO[111] 15[112] 2012 2020
Vega C  Europe ESA / ASI 3,300[113] 2,200 to SSO[113] 2[114] 2022 2022
Zhuque-2  China LandSpace 4,000[115] 2,000 to SSO 1 2022[116] 2022
  1. ^ Suborbital flight tests and on-pad explosions are excluded, but launches failing en route to orbit are included.
  2. ^ Reference altitude 500 km
  3. ^ for Starliner[8]
  4. ^ GTO payload is 8,000 kg when the core first-stage booster lands downrange on a drone ship (ASDS) and the side boosters return to the launch site (RTLS). Increased to 10,000 kg if all boosters land on drone ships.[24]
  5. ^ GTO payload with enhanced engines, as of GSLV version 2A[31]
  6. ^ A suborbital test flight was conducted in 2014 (designated LVM-3/CARE) without the cryogenic upper stage (CUS).[34]
  7. ^ 5,100 kg to a 500-km Sun-synchronous orbit; 3,300 kg to 800 km[35]: 64–65 
  8. ^ A suborbital test flight was conducted in April 2018.[40]
  9. ^ A suborbital test flight was conducted in March 2012.[49]
  10. ^ Additionally, two suborbital missions were conducted in 2010 and 2011.[73]
  11. ^ Reference altitude 400 km
  12. ^ A suborbital test flight was conducted in May 2018.[81]
  13. ^ A suborbital test flight succeeded in 2016; both orbital flights in 2017 and 2019 failed.[93]
  14. ^ Suborbital test flight in 2004, without Fregat upper stage.[95]
  15. ^ A suborbital test flight failed in 2006. The first two orbital missions failed in 2009 and 2012, and the rocket finally reached orbit in late 2012.[108]
  16. ^ Reference altitude 700 km

Upcoming rockets

Upcoming North American launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Antares 330  United States Northrop Grumman/

Firefly Aerospace[a]

> 8,000[117] 2024
Aurora Canada Canada Reaction Dynamics 150 2024
C6 Launch Vehicle Canada Canada C6 Launch Systems 100 2024
Daytona  United States Phantom Space 425 2023
Dauntless  United States Vaya Space 1,000 2024
Laguna  United States Phantom Space 630-1,200 TBA
MLV  United States Firefly Aerospace 14,000 2025[118]
Neutron  United States
 New Zealand
Rocket Lab 8,000 2024[119]
New Glenn  United States Blue Origin 45,000[120] 13,000 2024
Rocket 4 United States USA Astra 600 2023
SLS Block 1B[b]  United States NASA / Boeing
Northrop Grumman
105,000[121] 37,000 to TLI[122] 208
SLS Block 2[c]  United States NASA / Boeing
Northrop Grumman
130,000[123] 45,000 to HCO[122] 2033
Starship[101]
(Single launch, reusable)
 United States SpaceX 150,000[124][102] 21,000[125] TBA
Starship[101]
(Additional refuelling launches)
 United States SpaceX 100,000+[101][124] 100,000+
[101]
100,000+ to Mars surface[101]
100,000+ to lunar surface[101]
TBA
Terran R  United States Relativity Space 33,500[126] 5,500[126] 2026[126]
Vector-R  United States Vector Launch 60 26 to SSO TBA
Vulcan / Centaur  United States ULA 27,200[127] 14,400[127] 7,200 to GEO[127]
12,100 to TLI
2023[128]

Upcoming Chinese launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Darwin-1  China Rocket Pi 470 2024
Gravity-1  China Orienspace 6,500 4,200 to SSO 2023
Gravity-2  China Orienspace 15,500 5,800 10,900 to SSO 2024
Hyperbola-2  China i-Space 2,000[40] 2023[47]
Long March 9  China CALT 150,000[129] 66,000[130] 53,000 to TLI[129]
40,000 to TMI[131]
2033
Long March 10  China CALT 70,000 27,000 to TLI 2027
Nebula-1  China Deep Blue Aerospace 1,000 2024
New Line 1
[132]
 China LinkSpace 200 to SSO[132] TBA
OS-M2  China OneSpace 390[79] 292 to SSO TBA
Pallas-1  China Galactic Energy 5,000 3,000 to SSO 2024[133]

Upcoming European launch vehicles (without Russian launch vehicles)

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Ariane 6 A62  Europe ArianeGroup 10,350[134]: 45  5,000[134]: 33  6,450 to SSO
3,000 to HEO
3,000 to TLI [134]: 40–49 
2024[135]
Ariane 6 A64  Europe ArianeGroup 21,650[134]: 46  11,500+ [134]: 33  14,900 to SSO
5,000 to GEO
8,400 to HEO
8,500 to TLI [134]: 40–49 
2024[135]
Cyclone-4M  Ukraine Yuzhnoye
Yuzhmash
5,000[136] 1,000[137] 3,350 to SSO[136] 2025[138]
Hera II  United Kingdom Astraius 2024
Miura 5  Spain PLD Space 900 450 to SSO 2024[139]
Prime  United Kingdom Orbex 220[140] 150 to SSO[d][141] 2023[142]
RFA One  Germany Rocket Factory Augsburg AG 1,600[143] 450[143] 2024[144]
Skyrora XL  United Kingdom Skyrora 335[145] 315 to SSO[145] 2024
SL1  Germany HyImpulse 500 2025
Spectrum  Germany Isar Aerospace 1,000[146] 700 to SSO[146] 2023[147]
Vega E  Europe ESA / ASI 3,000[148] 2026
Zephyr France France Latitude 72 2024

Upcoming Russian launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Amur (Soyuz-7)  Russia JSC SRC Progress 10,500[149] 2,600 4,700 to SSO 2026[149]
Cosmos  Russia SR space 100 TBD
Rokot-M  Russia Khrunichev ~2,000 2024
Irtysh (Soyuz-5)  Russia TsSKB-Progress
RSC Energia
18,000[150] 2,500 to GEO 2024[151]
Volga (Soyuz-6)  Russia TsSKB-Progress 9,300 2,300 5,500 2025
Stalker  Russia SR space 950 2024
Yenisei[152]  Russia TsSKB-Progress
RSC Energia
88,000 – 115,000[153] 27,000 to TLI[154][155][156] 2030s

Upcoming Indian launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Agnibaan  India AgniKul Cosmos 100 2023[157]
Vikram 1[158]  India Skyroot Aerospace[159] 315 to 45º inclination 500 km LEO 200 to 500 km SSPO 2023[160]
Vikram 2[158]  India Skyroot Aerospace 520 to 45º inclination 500 km LEO 410 to 500 km SSPO TBA
Vikram 3[158]  India Skyroot Aerospace 720 to 45º inclination 500 km LEO 580 to 500 km SSPO TBA

Upcoming Japanese and Taiwanese launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Epsilon S Japan Japan JAXA 1,400 600 to SSO 2023
Kairos  Japan Space One 100 2023
Zero  Japan Interstellar Technologies 100 to SSO[d][161] 2023[162]
HAPITH V Taiwan Taiwan

 Australia

TiSPACE 390 TBA

Upcoming South American launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Aventura 1 Argentina Argentina TLON Space 25 2024
VLM Brazil Brazil Institute of Aeronautics and Space 150 2025

Upcoming Korean launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Blue Whale 1  South Korea Perigee Aerospace 150 [2] 170 to SSO 2024
Hanbit-Nano South Korea South Korea Innospace 50 2024

Upcoming Korean launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Eris  Australia Gilmour Space Technologies 305[163] 2023[164]
Eris Block 2  Australia Gilmour Space Technologies 1,000 2024
Neutron  United States
 New Zealand
Rocket Lab 8,000 2024[119]
HAPITH V Taiwan Taiwan

 Australia

TiSPACE 390 TBA

Upcoming Iranian launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Qaem-100  Iran Islamic Revolutionary Guard Corps 80[165] TBA
Zuljanah  Iran Iranian Space Agency 220[166] TBA

Upcoming Singaporean launch vehicles

Vehicle Origin Manufacturer Payload mass to ... (kg) Date of first flight
LEO GTO Other
Volans (?) Singapore Singapore Equatorial Space Systems 60 TBA
Volans V500 Singapore Singapore Equatorial Space Systems 150 2024
Volans (?) Singapore Singapore Equatorial Space Systems 500 TBA
  1. ^ provides the first stage, including engines
  2. ^ with EUS
  3. ^ with EUS and
    advanced boosters
  4. ^ a b Reference altitude 500 km

Retired rockets

Vehicle Origin Manufacturer Mass to ... (kg) Launches
(+ suborbital)
Date of flight
LEO GTO Other First Last
Antares 110–130  United States Orbital 5,100[5] 1,500 to SSO 5[5] 2013 2014
Ariane 1  Europe Aérospatiale 1,830[167] 11[167] 1979 1986
Ariane 2  Europe Aérospatiale 2,270[167] 6[167] 1986 1989
Ariane 3  Europe Aérospatiale 2,650[167] 11[167] 1984 1989
Ariane 4 40  Europe Aérospatiale 4,600[167] 2,105 2,740 to SSO 7[167] 1990 1999
Ariane 4 42L  Europe Aérospatiale 7,000[167] 3,480 4,500 to SSO 13[167] 1993 2002
Ariane 4 42P  Europe Aérospatiale 6,000[167] 2,930 3,400 to SSO 15[167] 1990 2002
Ariane 4 44L  Europe Aérospatiale 7,000[167] 4,720 6,000 to SSO 40[167] 1989 2003
Ariane 4 44LP  Europe Aérospatiale 7,000[167] 4,220 5,000 to SSO 26[167] 1988 2001
Ariane 4 44P  Europe Aérospatiale 6,500[167] 3,465 4,100 to SSO 15[167] 1991 2001
Ariane 5 G  Europe EADS Astrium 18,000[168] 6,900[168] 16[168] 1996 2003
Ariane 5 G+  Europe EADS Astrium 7,100[168] 3[168] 2004 2004
Ariane 5 GS  Europe EADS Astrium 16,000[169] 6,600[168] 6[168] 2005 2009[170]
Ariane 5 ES  Europe EADS Astrium 21,000[171] 8,000[168] 8[168] 2008 2018
Ariane 5 ECA  Europe EADS Astrium 21,000[171] 11,210[172] 84 2002 2023
ASLV  India ISRO[173] 150[174] 4[174] 1987 1994
Athena I  United States Lockheed Martin 795[175] 515 4[176] 1995 2001
Athena II  United States Lockheed Martin 1,800[177] 3[178] 1998 1999[179]
Atlas-Able  United States General Dynamics ~175 to TLI 3 1959 1960
Atlas-Agena  United States Convair/General Dynamics 1,000 390 to TLI 109 1960 1978
Atlas-Centaur  United States Lockheed 1,134[180] 2,222[181] 148 1962 1983
Atlas B  United States Lockheed Martin ~4,000 10 1958 1959
Atlas E/F-Agena  United States Convair/General Dynamics/Lockheed 1,000 390 to TLI 1 1978 1978
Atlas E/F-Altair  United States Convair/General Dynamics/Lockheed 210 1 1990 1990
Atlas E/F-Burner  United States Convair/General Dynamics/Lockheed 950 1 1972 1972
Atlas E/F-MSD  United States Convair/General Dynamics/Lockheed 800 4 1976 1980
Atlas E/F-OIS  United States Convair/General Dynamics/Lockheed 870 2 1979 1985
Atlas E/F-OV1  United States Convair/General Dynamics/Lockheed 363 4 1968 1971
Atlas E/F-PTS  United States Convair/General Dynamics/Lockheed 295 1 1974 1974
Atlas E/F-Star  United States Convair/General Dynamics/Lockheed 725-1,100 20 1975 1995
Atlas G  United States Lockheed 5,900[182] 2,222 1,179 to HCO[182] 7[182] 1984 1989
Atlas H/MSD  United States Lockheed 3,630[183] 5 1983 1987
Atlas LV-3B  United States Convair 1,360 9 1960 1963
Atlas SLV-3  United States Convair 63 1966 1983
Atlas I  United States Lockheed Martin 5,900[182] 2,340[182] 11[182] 1990 1997
Atlas II  United States Lockheed Martin 6,780[182] 2,810 2,000 to HCO[182] 10[182] 1991 1998
Atlas IIA  United States Lockheed Martin 7,316[182] 3,180 2,160 to HCO[182] 23[182] 1992 2002
Atlas IIAS  United States Lockheed Martin 8,618[182] 3,833 2,680 to HCO[182] 30[182] 1993 2004
Atlas IIIA  United States Lockheed Martin 8,686[182] 4,060 2,970 to HCO[182] 2[182] 2000 2004
Atlas IIIB/DEC  United States Lockheed Martin 10,759[182] 4,609[182] 1[182] 2002 2002
Atlas IIIB/SEC  United States Lockheed Martin 10,218[184] 4,193[182] 3[182] 2003 2005
Atlas V 401  United States ULA 9,050[7] 4,950 6,670 to SSO 41[7] 2002 2022
Atlas V 411  United States ULA 9,050[7] 6,075 8,495 to SSO 6[7] 2006 2020
Atlas V 421  United States ULA 9,050[7] 7,000 9,050 to SSO 9[7] 2007 2022
Atlas V 431  United States ULA 9,050[7] 7,800 9,050 to SSO 3[7] 2005 2016
Atlas V 501  United States ULA 8,250[7] 3,970 5,945 to SSO
1,500 to GEO
7[7] 2010 2020
Atlas V 511  United States ULA 11,000[7] 5,250 7,820 to SSO
1,750 to GEO
1[185] 2022 2022
Atlas V 521  United States ULA 13,300[7] 6,485 9,585 to SSO
2,760 to GEO
2[7] 2003 2004
Atlas V 531  United States ULA 15,300[7] 7,425 11,160 to SSO
3,250 to GEO
5[7] 2010 2022
Atlas V 541  United States ULA 17,100[7] 8,240 12,435 to SSO
3,730 to GEO
9[7] 2011 2022
Black Arrow  United Kingdom RAE 73[186] 2 (+2) 1969[a] 1971
Blue Scout II  United States Vought 30 3 1961 1961
Commercial Titan III  United States Martin Marietta 13,100[187] 4 1990 1992
Conestoga 1620  United States Space Services 1179 1 1995 1995
Delta 0300  United States McDonnell Douglas 340[188] 747 to SSO[189] 3[190] 1972 1973[191]
Delta 0900  United States McDonnell Douglas 1,300[192] 818 to SSO[190] 2[190] 1972 1972
Delta 1410  United States McDonnell Douglas 340[193] 1[190] 1975 1975
Delta 1604  United States McDonnell Douglas 390[194] 2[190] 1972 1973
Delta 1900  United States McDonnell Douglas 1,800[190] 1[190] 1973 1973
Delta 1910  United States McDonnell Douglas 1,066[195] 1[190] 1975 1975
Delta 1913  United States McDonnell Douglas 328[196] 1[190] 1973 1973
Delta 1914  United States McDonnell Douglas 680[197] 2[190] 1972 1973
Delta 2310  United States McDonnell Douglas 336[198] 3[190] 1974 1981
Delta 2313  United States McDonnell Douglas 243 to GEO[199] 3[190] 1974 1977
Delta 2910  United States McDonnell Douglas 1,887[190] 6[190] 1975 1978
Delta 2913  United States McDonnell Douglas 2,000[200] 700[200] 6[190] 1975 1976
Delta 2914  United States McDonnell Douglas 724[190] 30[190] 1974 1979
Delta 3910  United States McDonnell Douglas 2,494[190] 1,154 with PAM-D 10[190] 1980 1988
Delta 3913  United States McDonnell Douglas 816[201] 1[190] 1981 1981
Delta 3914  United States McDonnell Douglas 954[190] 13[190] 1975 1987
Delta 3920  United States McDonnell Douglas 3,452[190] 1,284 with PAM-D 10[190] 1982 1989
Delta 3924  United States McDonnell Douglas 1,104[190] 4[190] 1982 1984
Delta 4925  United States McDonnell Douglas 3,400[202] 1,312[190] 2[190] 1989 1990
Delta 5920  United States McDonnell Douglas 3,848[203] 1[190] 1989 1989
Delta II 6920  United States McDonnell Douglas 3,983[190] 3[190] 1990 1992
Delta II 6925  United States McDonnell Douglas 1,447[190] 14[190] 1989 1992
Delta II 7320  United States Boeing IDS / ULA 2,865[190] 1,651 to SSO 12[190] 1999 2015
Delta II 7326  United States Boeing IDS 934[190] 636 to TLI
629 to HCO
3[190] 1998 2001
Delta II 7420  United States ULA 3,185[190] 1,966 to SSO 14[190] 1998 2018
Delta II 7425  United States Boeing IDS 1,100[190] 804 to HCO 4[190] 1998 2002
Delta II 7426  United States Boeing IDS 1,058[190] 734 to TLI
711 to HCO
1[190] 1999 1999
Delta II 7920  United States Boeing IDS / ULA 5,030[190] 3,123 to SSO 29[190] 1998 2017
Delta II 7925  United States Boeing IDS / ULA 1,819[190] 1,177 to TLI
1,265 to HCO
69[190] 1990 2009
Delta II-H 7920H  United States Boeing IDS / ULA 6,097[190] 3[190] 2003 2011
Delta II-H 7925H  United States Boeing IDS / ULA 2,171 1,508 to HCO[190] 3[190] 2003 2007
Delta III 8930  United States Boeing IDS 8,292[190] 3,810 3[190] 1998 2000
Delta IV M  United States Boeing IDS 9,440[13] 4,440 7,690 to polar 3[14] 2003 2006
Delta IV M+(4,2)  United States ULA 13,140[13] 6,390 10,250 to polar 14[14] 2002 2019
Delta IV M+(5,2)  United States ULA 11,470[13] 5,490 9,600 to polar 3[14] 2012 2018
Delta IV M+(5,4)  United States ULA 14,140[13] 7,300 11,600 to polar 8[14] 2009 2019
Diamant A  France SEREB 80 4 1965 1967
Diamant B  France SEREB 115 5 1970 1973
Diamant BP4  France SEREB 153 3 1975 1975
Dnepr  Ukraine Yuzhmash 3,700[204] 22[204] 1999 2015[205]
Energia[b]  Soviet Union NPO Energia 100,000[206] 20,000 to GEO[206]
32,000 to TLI[206]
1 (failed to orbit)[207] 1987 1987
Energia-Buran  Soviet Union NPO Energia (Launcher)
NPO Molniya (Orbiter)
30,000[206][c] 1 1988 1988
Europa I  Europe ELDO 200 3 1968 1970
Europa II  Europe ELDO 360 1 1971 1971
Falcon 1  United States SpaceX 470[208] 5[208] 2006 2009
Falcon 9 Full Thrust
(partially reusable)
 United States SpaceX 17,400[209] 5,500[23][d] 9,600 to polar[210] 319[211][212][e] 2015 2023
Falcon 9 Full Thrust
(expended)
 United States SpaceX 22,800[23] 8,300[23] 4,020 to TMI 15[214][215] 2017 2022
Falcon 9 v1.0  United States SpaceX 9,000 3,400 5 2010 2013
Falcon 9 v1.1  United States SpaceX 13,150[216][f] 4,850[216] 15[217] 2013 2016
Feng Bao 1  China Shanghai Bureau No.2 2,500[218] 8 (+3)[219] 1972 1981
GSLV Mk.I(a)  India ISRO 5,000[29] 1,540[220] 1[220] 2001 2001
GSLV Mk.I(b)  India ISRO 5,000[29] 2,150[220] 4[220] 2003 2007
GSLV Mk.I(c)  India ISRO 5,000[29] 1[220] 2010 2010
H-I  Japan
 United States
Mitsubishi 1,400[221] 9 1986 1992
H-II / IIS  Japan Mitsubishi 10,060[222] 4,000[223] 7[223] 1994 1999
H-IIA 204  Japan Mitsubishi 5,950[35]: 48  5[36] 2006 2021
H-IIA 2022  Japan Mitsubishi 4,500[36] 3[36] 2005 2007
H-IIA 2024  Japan Mitsubishi 11,000[224] 5,000[36] 7[36] 2002 2008
H-IIB  Japan Mitsubishi 16,500 (ISS)[38] 8,000 8[225] 2009 2020
J-I  Japan Nissan Motors[226] 1,000[227] 0 (+1) 1996 1996
Juno I  United States Chrysler 11 1 1958 1959
Juno II  United States Chrysler 41 6 to TLI 10 1958 1961
Kaituozhe-1  China CALT 100[228] 2 2002 2003
Kosmos  Soviet Union NPO Polyot 1961 1967
Kosmos-1  Soviet Union NPO Polyot 1,400 8 1964 1965
Kosmos-2I  Soviet Union NPO Polyot 1966 1977
Kosmos-3  Soviet Union NPO Polyot 1,400 6 1966 1968
Kosmos-3M  Soviet Union
 Russia
NPO Polyot 1,500[229] 442[230] 1967 2010
Lambda 4S  Japan Nissan Motors[226] 26[231] 5 1966 1970
LauncherOne  United States Virgin Orbit 500 300 to SSO 6 2020 2023
Long March 1  China CALT 300[232] 2[233] 1970 1971
Long March 1D  China CALT 740[234] 0 (+3)[233] 1995[g] 2002
Long March 2A  China CALT 2,000[235] 4[53] 1974 1978
Long March 2E  China CALT 9,200[53] 7[53] 1990 1995
Long March 3  China CALT 5,000[55] 13[55] 1984 2000
Long March 3B  China CALT 11,200[54] 5,100 5,700 to SSO 12[55] 1996 2012
Long March 4A  China CALT 4,000 2[56] 1988 1990
Luna  Soviet Union 400 to TLI 9 1958 1960
M-V  Japan Nissan Motors[226] (1997–2000)
IHI Aerospace[17] (2000–2006)
1,850[231] 7 1997 2006
Molniya  Soviet Union RSC Energia 1,800[236] 40[237] 1960 1967
Molniya-L  Soviet Union RSC Energia 1965
Molniya-M  Soviet Union
 Russia
RSC Energia 2,400[238] 280[239] 1965 2010
Mu-3C  Japan Nissan Motors[226] 195[231] 4 1974 1979
Mu-3H  Japan Nissan Motors[226] 300[231] 3 1977 1978
Mu-3S  Japan Nissan Motors[226] 300[231] 4 1980 1984
Mu-3SII  Japan Nissan Motors[226] 770[231] 8 1985 1995
Mu-4S  Japan Nissan Motors[226] 180[231] 4 1971 1972
N1  Soviet Union NPO Energia 95,000[240][241][242][h] 4[243] (never reached orbit) 1969 1972
N-I  Japan
 United States
Mitsubishi 1,200[244] 7 1975 1982
N-II  Japan
 United States
Mitsubishi 2,000[245] 8 1981 1987
Naro-1  South Korea
 Russia
KARI/Khrunichev 100[246] 3 2009 2013
Paektusan-1  North Korea KCST 6 1 1998 1998
Pilot II  United States United States Navy 1.05[247] 10 1958 1958
Polyot  Soviet Union RSC Energia 1,400 2 1963 1964
Proton  Soviet Union Khrunichev 4 1965 1966
Proton-K  Soviet Union
 Russia
Khrunichev 19,760[248] 4,930[249] 311[250] 1965 2012
PSLV-G  India ISRO 3,200[89] 1,050 1,600 to SSO 12[89] 1993 2016[251]
Rocket 3  United States Astra 100[252] 150 to SSO 7[253] 2020[252] 2022
Rokot  Russia Khrunichev 1,950[254] 1,200 to SSO 34[254] 1990 2019
R-36-ORB  Russia Yuzhmash 3,350 24 1965 1971
Safir  Iran Iranian Space Agency 65[255] 7[255][i] 2008 2019
Saturn I  United States Chrysler (S-I)
Douglas (S-IV)
9,000[256] 10[257] 1961 1965[257]
Saturn IB  United States Chrysler (S-IB)
Douglas (S-IVB)
18,600[258] 9[259] 1966 1975
Saturn V  United States Boeing (S-IC)
North American (S-II)
Douglas (S-IVB)
140,000[260][261] 47,000 to TLI[262] 13[263][264][j] 1967 1973
Saturn INT-21  United States Boeing (S-IC)
North American (S-II)
115,900 1 1973 1973
Scout A  United States US Air Force/NASA 122 12 1965 1970
Scout X-1  United States Vought 7 1960 1961
Scout X-2  United States Vought 76 2 1962 1962
Scout X-3  United States Vought 1963
Scout X-4  United States Vought ~115 1963
Scout A  United States Vought 1965
Scout B  United States Vought 1965
Shavit Israel Israel IAI 160 2 1988 1990
Shavit-1 Israel Israel IAI 225 4 1995 2004
Shtil'  Russia Makeyev 280–420[265] 2[266] 1998 2006
SLV  India ISRO 40[267] 4[267] 1979 1983[267]
Soyuz  Soviet Union RSC Energia 6,450 31[268] 1966 1976
Soyuz-FG  Russia TsSKB-Progress 6,900[269] 70[96][270] 2001 2019
Soyuz-L  Soviet Union RSC Energia 5,500 3[271] 1970 1971
Soyuz-M  Soviet Union RSC Energia 6,600 8[272] 1971 1976
Soyuz ST-A  Russia
 Europe
TsSKB-Progress
Arianespace
7,800 from Kourou[273] 2,810 with Fregat[274] 9[96] 2011 2021
Soyuz ST-B  Russia
 Europe
TsSKB-Progress
Arianespace
9,000 from Kourou[275] 3,250 with Fregat[274] 4,400 to SSO[276] 18[96] 2011 2022
Soyuz-U  Soviet Union
 Russia
TsSKB-Progress 6,650 from Baikonour[277]
6,150 from Plesetsk[277]
786[96][97][278] 1973 2017
Soyuz-U2  Soviet Union
 Russia
TsSKB-Progress 7,050 72[279] 1982 1995
Space Shuttle  United States ATK (SRBs)
Martin Marietta (External tank)
Rockwell (Orbiter)
24,400[c]
3,550 to escape with IUS[280] 135[282] 1981 2011
Sparta  United States ABMA/Chrysler 45 10 1966 1967
Sputnik 8K71PS  Soviet Union RSC Energia 500[283] 2 1957 1957
Sputnik 8A91  Soviet Union RSC Energia 1,327 2 1958 1958
SS-520  Japan IHI Aerospace 4[284] 2[285] 2017[286][k] 2018
Start-1  Russia MITT 532 350 to SSO[287] 5[288] 1993 2006
Strela  Russia Khrunichev 1,400[289] 3[290] 2003 2014
Terran 1  United States Relativity Space 1,250[291] 900 to SSO 1 2023 2023
Titan II GLV  United States Martin Marietta 3,600[292] 11 (+1) 1964 1966
Titan II(23)G  United States Martin Marietta 3,600[293] 13 1988 2003
Titan IIIA  United States Martin Marietta 3,100[294] 4 1964 1965
Titan IIIB  United States Martin Marietta 3,000[295] 70 1966 1987
Titan IIIC  United States Martin Marietta 13,100[296] 36 1965 1982
Titan IIID  United States Martin Marietta 12,300[297] 22 1971 1982
Titan IIIE  United States Martin Marietta 15,400[298] 7 1974 1977
Titan 34D  United States Martin Marietta 4,515[299] 15 1982 1989
Titan IVA  United States Martin Marietta 17,110[300] 4,944 with IUS
22[301] 1989 1998
Titan IVB  United States Lockheed Martin 21,682[302] 5,761[302]
(9,000 with upper stage)
17[301] 1997 2005
Thor-Able  United States Douglas/Aerojet 120 16 1958 1960
Thor-Ablestar  United States Douglas/Aerojet 150 19 1960 1965
Thor-Agena  United States Douglas/Lockheed 810 145 1959 1968
Thorad-Agena  United States Douglas 43 1966 1972
Thor-Burner  United States Douglas 24 1965 1976
Thor-Delta  United States Douglas 180 12 1960 1962
Tsyklon-2A  Soviet Union Yuzhmash 3,350[303] 8[304] 1967 1969
Tsyklon-2  Soviet Union
 Ukraine
Yuzhmash 2,820[305] 106[306] 1969 2006[306]
Tsyklon-3  Soviet Union
 Ukraine
Yuzhmash 1,920[307] 122[308] 1977 2009[308]
Unha-2  North Korea KCST ~100 1 2009 2009
Vanguard  United States Martin 9[309] 11 (+1) 1957 1959
VLS-1  Brazil AEB, IAE 380[310] 2[l] (never reached orbit) 1997 2003
Volna  Russia Makeyev 100[311] 1 (+5)[266] 1995[m] 2005[266]
Voskhod  Soviet Union RSC Energia 6,000[312] 306 1963 1976
Vostok-L  Soviet Union RSC Energia 390 to TLI[313] 4 1960 1960
Vostok-K  Soviet Union RSC Energia 2,460[314] 16 1960 1964
Vostok-2  Soviet Union RSC Energia 4,730[314] 45 1962 1967
Vostok-2M  Soviet Union RSC Energia 1,300[315] 93 1964 1991
Soyuz/Vostok  Soviet Union RSC Energia 6,000[316] 2 1965 1966
Zenit-2  Soviet Union
 Ukraine
Yuzhnoye 13,740[317] 36[318] 1985 2004[319]
Zenit-2M / 2SLB  Ukraine Yuzhnoye 13,920[317] 2[318] 2007 2011
Zenit-3F  Ukraine Yuzhnoye 1,740 to GEO[320] 4[321] 2011 2017
Zenit-3SL  Ukraine Yuzhmash
RSC Energia
7,000[321] 6,160 36[321] 1999 2014
Zenit-3SLB / 3M  Ukraine Yuzhmash
RSC Energia
3,750[321] 6[321] 2008 2013
Zhuque-1  China LandSpace 300[322] 200 to SSO 1[323] 2018[323] 2018
  1. ^ First suborbital test in 1969, first orbital launch attempt in 1970
  2. ^ Without Buran, and assuming payload providing orbital insertion
  3. ^ a b The U.S. Space Shuttle Transportation System and the Soviet Energia-Buran system consist of launch vehicle rockets and returnable spaceplane orbiter. Payload values listed here are for the mass of the payload in cargo bay of the spaceplanes, excluding the mass of the spaceplanes themselves.
  4. ^ GTO payload is 5,550 kg when the first stage lands downrange on a drone ship (ASDS). Reduced to 3,500 kg if the first stage returns to the launch site (RTLS).[24]
  5. ^ Additionally, one rocket exploded on the launch pad in 2016.[213]
  6. ^ The SpaceX website lists the F9 payload to LEO as 13,150kg. The payload to GTO is listed as 4,850kg. However, SpaceX has stated that these numbers include a 30% margin to accommodate re-usability.
  7. ^ Suborbital test flights in 1995, 1997 and 2002, no orbital launches attempted
  8. ^ The N1 rocket was initially designed for 75 t LEO capacity and launch attempts were made with this version, but there were studies to increase the payload capacity to 90–95 t, if a liquid-hydrogen upper stage engine could be developed.
  9. ^ Additionally, two rockets exploded on the launch pad, one in 2012 and one in 2019.[255]
  10. ^ The Saturn V made 13 launches, 12 of which reached the correct orbits, and the other (Apollo 6) reached a different orbit than the one which had been planned; however, some mission objectives could still be completed; NASA, Saturn V News Reference, Appendix: Saturn V Flight History (1968) Archived 2011-05-17 at the Wayback Machine. For more information, see the Saturn V article. The Saturn V launch record is usually quoted as having never failed, e.g. "The rocket was masterminded by Wernher Von Braun and did not fail in any of its flights", Alan Lawrie and Robert Godwin; Saturn, but the Apollo 6 launch should be considered a partial mission failure. The 13th launch of Saturn V was in special configuration (SA-513) with the Skylab.
  11. ^ A prior version of the SS-520 flew twice as a suborbital sounding rocket in 1998 and 2000. In 2017, the addition of a small third stage enabled orbital launches of ultra-light nano- or picosatellites.[284]
  12. ^ A third rocket exploded before launch.
  13. ^ First orbital launch attempt in 2005

Launch systems by country

The following chart shows the number of launch systems developed in each country, and broken down by operational status. Rocket variants are not distinguished; i.e., the Atlas V series is only counted once for all its configurations 401–431, 501–551, 552, and N22.

10
20
30
40
50
AUS
BRZ
CHN
EUR
ESP
FRA
IND
IRN
ISR
JPN
NKR
NZL
RUS
SKR
TWN
UKR
UK
USA
  •   Operational
  •   In development
  •   Retired

See also

Notes

  1. ^ There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by forcing a gas from the back/rear of the vehicle at very high speed through a supersonic de Laval nozzle. This sort of engine is called a rocket engine.
  2. ^ The first medieval rockets were solid-fuel rockets powered by gunpowder; they were used by the Chinese, Indians, Mongols and Arabs, in warfare as early as the 13th century.
  3. ^ Such as the Pegasus rocket and SpaceShipOne.
  4. ^ Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control. Soviet bloc satellites have used electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north-south stationkeeping and orbit raising. Interplanetary vehicles mostly use chemical rockets as well, although a few have used ion thrusters and Hall effect thrusters (two different types of electric propulsion) to great success.

References

  1. ^ "Firefly Alpha". Firefly Aerospace. Retrieved 29 October 2019.
  2. ^ a b c "Angara Launch Vehicle Family". Khrunichev State Research and Production Space Center. Retrieved 2 September 2018.
  3. ^ Krebs, Gunter. "Angara Family". Gunter's Space Page. Retrieved 31 December 2021.
  4. ^ Mooney, Justin (2022-04-30). "Russia launches first orbital Angara 1.2 rocket with military payload". NASASpaceFlight.com. Retrieved 2022-08-12.
  5. ^ a b c Krebs, Gunter. "Antares (Taurus-2)". Gunter's Space Page. Retrieved 1 December 2019.
  6. ^ Krebs, Gunter. "Antares 230". Gunter's Space Page. Retrieved 20 November 2019.
  7. ^ a b c d e f g h i j k l m n o p q r s Krebs, Gunter. "Atlas-5". Gunter's Space Page. Retrieved 29 July 2022.
  8. ^ Egan, Barbara [@barbegan13] (15 October 2016). "@torybruno @ulalaunch @baserunner0723 We are calling the config N22. No payload fairing with the Starliner on board" (Tweet). Archived from the original on 5 December 2022. Retrieved 20 March 2023 – via Twitter.
  9. ^ Roulette, Joey (22 December 2019). "'Bull's-eye' landing in New Mexico for Boeing's Starliner astronaut capsule". Reuters. Retrieved 22 December 2019.
  10. ^ a b "Pair of Chinese launches put classified and commercial satellites into orbit". 9 January 2023.
  11. ^ Krebs, Gunter. "Ceres-1". Gunter's Space Page. Retrieved 6 February 2022.
  12. ^ Jeongmin Kim (1 June 2023). "North Korea rushed satellite launch after seeing ROK rocket success, Seoul says". NK News. Retrieved 2 June 2023.
  13. ^ a b c d e "Delta IV Launch Services User's Guide, June 2013" (PDF). United Launch Alliance. June 2013. pp. 2–10. Archived from the original (PDF) on 10 July 2014. Retrieved 9 October 2017.
  14. ^ a b c d e Krebs, Gunter. "Delta-4". Gunter's Space Page. Retrieved 17 March 2019.
  15. ^ a b "Rocket Lab Increases Electron Payload Capacity, Enabling Interplanetary Missions and Reusability". Rocket Lab. Retrieved 2020-08-04.
  16. ^ "Completed Missions". Rocket Lab. Retrieved 2022-03-09.
  17. ^ a b "Projects&Products". IHI Aerospace. Archived from the original on 6 April 2011. Retrieved 8 March 2011.
  18. ^ "Epsilon a solid propellant launch vehicle for new age" (PDF). IHI Aerospace. Retrieved 3 February 2018.
  19. ^ Krebs, Gunter. "Epsilon". Gunter's Space Page. Retrieved 18 January 2019.
  20. ^ Either 2 or 3 boosters recoverable
  21. ^ Musk, Elon. Making Life Multiplanetary. SpaceX. Event occurs at 15:35. Archived from the original on 2021-12-12. Retrieved 22 March 2018 – via YouTube. BFR in fully reusable configuration, without any orbital refueling, we expect to have a payload capability of 150 tonnes to low Earth orbit and that compares to about 30 for Falcon Heavy
  22. ^ Musk, Elon [@elonmusk] (12 February 2018). "@DavideDF_ @doug_ellison @dsfpspacefl1ght Side boosters landing on droneships & center expended is only ~10% performance penalty vs fully expended. Cost is only slightly higher than an expended F9, so around $95M" (Tweet). Archived from the original on 10 August 2022. Retrieved 20 March 2023 – via Twitter.
  23. ^ a b c d "Capabilities & Services". SpaceX. Retrieved 5 April 2017.
  24. ^ a b Koenigsmann, Hans (3 October 2018). SpaceX performance tiers to GTO. IAC 2018. Retrieved 23 October 2018.
  25. ^ Krebs, Gunter. "Falcon-Heavy". Gunter's Space Page. Retrieved 15 April 2019.
  26. ^ Krebs, Gunter. "Falcon-Heavy (Block 5)". Gunter's Space Page. Retrieved 15 July 2019.
  27. ^ a b c "SpaceX". SpaceX. Retrieved 2020-08-29.
  28. ^ Sesnic, Austin DeSisto, Trevor (2023-05-03). "ViaSat-3 Americas | Falcon Heavy". Everyday Astronaut. Retrieved 2023-05-07.{{cite web}}: CS1 maint: multiple names: authors list (link)
  29. ^ a b c d "Geosynchronous Satellite Launch Vehicle (GSLV)". ISRO. Archived from the original on June 21, 2019. Retrieved August 31, 2018.
  30. ^ Subramanian, T.S. (14 September 2018). "ISRO developing vehicle to launch small satellites". Frontline. Retrieved 29 August 2018.
  31. ^ a b Krebs, Gunter. "GSLV". Gunter's Space Page. Retrieved 19 December 2018.
  32. ^ "GSLV MkIII-M1 Successfully Launches Chandrayaan-2 spacecraft - ISRO". www.isro.gov.in. Archived from the original on 2019-12-12. Retrieved 2019-12-01.
  33. ^ Krebs, Gunter. "GSLV Mk.3 (LVM-3)". Gunter's Space Page. Retrieved 10 August 2019.
  34. ^ "Crew module Atmospheric Re-entry Experiment (CARE)". ISRO. 18 December 2014. Archived from the original on 25 September 2020. Retrieved 4 September 2018.
  35. ^ a b c d e "H-IIA – User's Manual" (PDF). 4.0. Mitsubishi Heavy Industries, MHI Launch Services. February 2015. YET04001. Retrieved 4 September 2018.
  36. ^ a b c d e f Krebs, Gunter. "H-2A". Gunter's Space Page. Retrieved 12 November 2018.
  37. ^ Only the X00 version of the H3 is intended for LEO launches.[failed verification] The higher capability X02 and X03 variants could presumably launch significantly more payload to LEO, but are not specified for this mission. Space Launch Report: H3 Data Sheet, retrieved 20 Feb. 2019/
  38. ^ a b "MHI Launch Services: Launch Vehicles". Mitsubishi Heavy Industries, MHI Launch Services. Retrieved 4 September 2018.
  39. ^ 新型基幹ロケットの開発状況について [Development status of the new carrier rocket] (PDF) (in Japanese). JAXA. 2 July 2015. p. 3. Retrieved July 8, 2015.
  40. ^ a b c Jones, Andrew (15 May 2018). "Chinese commercial launch sector nears takeoff with suborbital rocket test". SpaceNews. Retrieved 16 August 2018.
  41. ^ "Chinese rocket company suffers third consecutive launch failure". SpaceNews. 2022-05-13. Retrieved 2022-05-13.
  42. ^ Huang, Echo (25 July 2019). "A private Chinese space firm successfully launched a rocket into orbit". Quartz. Retrieved 10 August 2019.
  43. ^ a b Krebs, Gunter. "Jielong-1 (Smart Dragon-1, SD 1)". Gunter's Space Page. Retrieved 2 November 2019.
  44. ^ Krebs, Gunter. "Jielong-3 (Smart Dragon-3, SD 3)". Gunter's Space Page. Retrieved 9 December 2022.
  45. ^ a b Krebs, Gunter. "Kaituozhe-2 (KT-2)". Gunter's Space Page. Retrieved 2 November 2019.
  46. ^ "产品信息 - 中科宇航". www.cas-space.com. Retrieved 2022-08-13.
  47. ^ a b Jones, Andrew (6 July 2022). "New launch vehicles set for test flights from China's Jiuquan spaceport". SpaceNews. Retrieved 8 July 2022.
  48. ^ Krebs, Gunter. "Zhongke-1 (ZK-1, Lijian-1)". Gunter's Space Page. Retrieved 31 July 2021.
  49. ^ a b Krebs, Gunter. "Kuaizhou-1 (KZ-1) / Fei Tian 1". Gunter's Space Page. Retrieved 8 January 2020.
  50. ^ "快舟十一号小型固体运载火箭(KZ-11):推迟到2018年首飞" [Kuaizhou 11 small solid launch vehicle (KZ-11): First flight planned for 2018] (in Chinese). October 30, 2017. Archived from the original on July 27, 2018. Retrieved March 10, 2018.
  51. ^ "Kuai Zhou (Fast Vessel)". China Space Report. Archived from the original on March 11, 2018. Retrieved March 10, 2018.
  52. ^ "Two satellites with secretive missions launched by China". Spaceflight Now. 12 October 2018. Retrieved 12 October 2018.
  53. ^ a b c d e f Krebs, Gunter. "CZ-2 (Chang Zheng-2)". Gunter's Space Page. Retrieved 5 October 2021.
  54. ^ a b c d "LM-3A Series Launch Vehicles User's Manual Issue 2011" (PDF). 2011. Archived from the original (PDF) on 17 July 2015. Retrieved 17 August 2015.
  55. ^ a b c d e f Krebs, Gunter. "CZ-3 (Chang Zheng-3)". Gunter's Space Page. Retrieved 5 October 2021.
  56. ^ a b c d Krebs, Gunter. "CZ-4 (Chang Zheng-4)". Gunter's Space Page. Retrieved 5 October 2021.
  57. ^ Krebs, Gunter. "CZ-4C (Chang Zheng-4C)". Gunter's Space Page. Retrieved 16 August 2018.
  58. ^ a b c Qin, Xudong; Long, Lehao; Rong, Yi (April 2016). "我国航天运输系统成就与展望" [Achievements and prospects of China's space transportation system]. 深空探测学报 (Journal of Deep Space Exploration) (in Chinese). 3 (4): 315–322. doi:10.15982/j.issn.2095-7777.2016.04.003. Retrieved 28 August 2017.
  59. ^ a b c d Krebs, Gunter. "CZ-5 (Chang Zheng-5)". Gunter's Space Page. Retrieved 24 August 2021.
  60. ^ a b Jones, Andrew (14 February 2020). "China prepares to launch new rockets as part of push to boost space program". space.com. Retrieved 14 February 2020.
  61. ^ Barbosa, Rui (19 September 2015). "China conducts debut launch of Long March 6". NASASpaceFlight.com. Retrieved 2015-09-26.
  62. ^ a b Krebs, Gunter. "CZ-6 (Chang Zheng-6)". Gunter's Space Page. Retrieved 5 October 2021.
  63. ^ "China conducts debut launch of Long March 6". Xinhua Net. 29 March 2022. Retrieved 2022-04-14.
  64. ^ ""长征七号"运载火箭具备近地轨道13.5吨、700千米太阳同步轨道5.5吨运载能力". 新华网. 2011-12-29. Archived from the original on 2015-11-02.
  65. ^ a b Krebs, Gunter. "CZ-7 (Chang Zheng-7)". Gunter's Space Page. Retrieved 5 October 2021.
  66. ^ "长征七号首飞成功 空间实验室任务大幕拉开" [Successful maiden flight of the Long March 7 mission Damulakai]. www.spacechina.com (in Chinese). 2016-06-25. Archived from the original on 28 June 2016. Retrieved 25 June 2016.
  67. ^ Krebs, Gunter. "CZ-8 (Chang Zheng-8)". Gunter's Space Page. Retrieved 5 October 2021.
  68. ^ Chan, Kai Yee (8 October 2015). "China reveals CZ-11 anti-ASAT rocket". Chinese Daily Mail. Archived from the original on 23 February 2019. Retrieved 4 September 2018.
  69. ^ Krebs, Gunter. "CZ-11 (Chang Zheng-11)". Gunter's Space Page. Retrieved 5 October 2021.
  70. ^ "Minotaur I Space Launch Vehicle—Fact Sheet" (PDF). Orbital Sciences Corporation. 2012. Retrieved 28 February 2012. Spacecraft mass-to-orbit of up to 580 kg to LEO (28.5 deg, 185 km)
  71. ^ Krebs, Gunter. "Minotaur-1 (OSP-SLV)". Gunter's Space Page. Retrieved 5 October 2021.
  72. ^ "Minotaur IV – Fact sheet" (PDF). Orbital Sciences Corporation. 2010. BR06005d. Archived from the original (PDF) on 8 October 2010. Retrieved 4 March 2009.
  73. ^ a b c d Krebs, Gunter. "Minotaur-3/-4/-5/-6 (OSP-2 Peacekeeper SLV)". Gunter's Space Page. Retrieved 5 October 2021.
  74. ^ "Taurus". Orbital Sciences Corporation. 2012. Archived from the original on 22 July 2012.
  75. ^ "Minotaur-C, Ground-Launched Space Launch Vehicle" (PDF). Orbital Sciences Corporation. 2014. FS003_02_2998. Archived from the original (PDF) on 14 July 2014.
  76. ^ Krebs, Gunter. "Taurus / Minotaur-C". Gunter's Space Page. Retrieved 30 November 2017.
  77. ^ "Korea Space Launch Vehicle (Nuri)". Korea Aerospace Research Institute. Retrieved 1 December 2019.
  78. ^ a b "South Korea's KSLV-II conducts maiden launch". NASASpaceFlight.com. 2021-10-21. Retrieved 2021-10-22.
  79. ^ a b Goh, Deyana (5 July 2018). "Chinese startup One Space successfully tests first stage engine for orbital rocket". Spacetech Asia. Retrieved 16 August 2018.
  80. ^ Krebs, Gunter. "OS-M (Chongqing SQX)". Gunter's Space Page. Retrieved 15 April 2019.
  81. ^ Jones, Andrew (17 May 2018). "Chinese company OneSpace sends OS-X rocket to 40 km in maiden flight". GBTimes. Archived from the original on 25 February 2020. Retrieved 17 May 2018.
  82. ^ a b Krebs, Gunter. "Pegasus". Gunter's Space Page. Retrieved 11 October 2019.
  83. ^ Clark, Stephen (11 October 2019). "NASA Awards Launch for Orbital's Pegasus Rocket". Spaceflight Now. Retrieved 11 October 2019.
  84. ^ "Proton Launch System Mission Planner's Guide, LKEB-9812-1990" (PDF). International Launch Services. p. 2. Archived from the original on 27 October 2007. Retrieved 12 November 2007. LEO i = 51.6°, H = 200 km circular ... GTO (1800 m/s from GSO) i = 31.0°, Hp = 2100 km, Ha = 35,786 km
  85. ^ "Proton Launch System Mission Planner's Guide – Section 2. LV Performance" (PDF). International Launch Services. July 2009. Archived from the original (PDF) on 5 August 2013. Retrieved June 11, 2017.
  86. ^ Krebs, Gunter. "Proton-M Blok-DM-2". Gunter's Space Page. Retrieved 9 October 2017.
  87. ^ Krebs, Gunter. "Proton-M Blok-DM-03". Gunter's Space Page. Retrieved 10 August 2019.
  88. ^ Krebs, Gunter. "Proton-K and -M Briz-M". Gunter's Space Page. Retrieved 12 October 2019.
  89. ^ a b c d e f g h Krebs, Gunter. "PSLV". Gunter's Space Page. Retrieved 1 December 2019.
  90. ^ Arunan, S.; Satish, R. (25 September 2015). "Mars Orbiter Mission spacecraft and its challenges". Current Science. 109 (6): 1061–1069. doi:10.18520/v109/i6/1061-1069.
  91. ^ "ABL Space Systems".
  92. ^ "ABL Space Systems maiden flight fails after liftoff". 10 February 2023.
  93. ^ a b c Krebs, Gunter. "Simorgh (Safir-2)". Gunter's Space Page. Retrieved 15 January 2019.
  94. ^ a b "Soyuz-2.1 Launch Vehicle". Progress Rocket Space Centre. Retrieved 2 February 2018.
  95. ^ a b Krebs, Gunter. "Soyuz-2-1a (14A14)". Gunter's Space Page. Retrieved 10 August 2019.
  96. ^ a b c d e f Krebs, Gunter. "Soyuz with Fregat upper stage". Gunter's Space Page. Retrieved 26 September 2019.
  97. ^ a b Krebs, Gunter. "Soyuz with Ikar and Volga upper stages". Gunter's Space Page. Retrieved 20 December 2016.
  98. ^ "Soyuz Rocket". Space Launch Report. Retrieved 17 May 2015.
  99. ^ Krebs, Gunter. "Soyuz-2-1b". Gunter's Space Page. Retrieved 27 September 2019.
  100. ^ a b Krebs, Gunter. "Soyuz core only". Gunter's Space Page. Retrieved 10 August 2019.
  101. ^ a b c d e f g "Starship". SpaceX. Archived from the original on 30 September 2019. Retrieved 1 October 2019.
  102. ^ a b "SpaceX". SpaceX. Retrieved 2023-02-10.
  103. ^ Harbaugh, Jennifer (9 July 2018). "The Great Escape: SLS Provides Power for Missions to the Moon". NASA. Archived from the original on 11 December 2019. Retrieved 16 November 2022. Public Domain This article incorporates text from this source, which is in the public domain.
  104. ^ [1] (PDF). 20 August 2018. Archived (PDF) from the original on 7 August 2020. Retrieved 16 November 2022. Public Domain This article incorporates text from this source, which is in the public domain.
  105. ^ Lock, Samantha (16 November 2022). "NASA Artemis 1 launch: Rocket lifts off on moon mission – as it happened". The Guardian.
  106. ^ Krebs, Gunter. "SSLV". Gunter's Space Page. Retrieved 16 August 2018.
  107. ^ "India's new SSLV rocket fails in first launch". SpaceNews. 2022-08-07. Retrieved 2022-08-14.
  108. ^ a b Krebs, Gunter. "Unha ("Taepodong-2")". Gunter's Space Page. Retrieved 20 December 2016.
  109. ^ China 'N Asia Spaceflight [@CNSpaceflight] (16 October 2022). "Finally we have more data of the mysterious Tianlong-2: 32.8m tall 5.7m D3.35m fairing 190t liftoff thrust with 7 TH-11(?) 1 300KN closed-cycle kerolox TH-11 vacuum in 2nd stage TH-31 upper stage for payloads deployment 2t to LEO 1.5t to 500km SSO" (Tweet). Retrieved 16 October 2022 – via Twitter.
  110. ^ "Vega overview". Arianespace. Retrieved 7 June 2018.
  111. ^ "Vega User's Manual" (PDF). Issue 4. Arianespace. April 2014. pp. 2–10. Retrieved 4 September 2018.
  112. ^ Krebs, Gunter. "Vega". Gunter's Space Page. Retrieved 15 July 2019.
  113. ^ a b "Vega C - Arianespace". Arianespace. Retrieved 3 February 2023.
  114. ^ "Vega C lifts off on maiden flight". SpaceNews. 2022-07-13. Retrieved 2022-08-12.
  115. ^ Jones, Andrew (10 July 2018). "Commercial Chinese companies set sights on methalox rockets, first orbital launches". SpaceNews. Retrieved 16 August 2018.
  116. ^ Jones, Andrew [@AJ_FI] (14 December 2022). "Looks like Zhuque-2 second stage failed to reach orbital velocity. Satellites lost. Similar to Zhuque-1 launch four years ago. https://t.co/DuDtHVHyyc" (Tweet). Archived from the original on 22 December 2022. Retrieved 20 March 2023 – via Twitter.
  117. ^ "Northrop Grumman Teams with Firefly Aerospace to Develop Antares Rocket Upgrade and New Medium Launch Vehicle". Northrop Grumman Newsroom. Retrieved 2022-08-08.
  118. ^ "Medium Launch Vehicle". Firefly Aerospace. Retrieved 11 March 2023.
  119. ^ a b "JP Introducing Neutron". YouTube. 2021-03-01. Archived from the original on 2021-12-12. Retrieved 2021-03-01.
  120. ^ Foust, Jeff (8 March 2017). "Eutelsat first customer for Blue Origin's New Glenn". SpaceNews. Retrieved 8 March 2017.
  121. ^ "Space Launch System" (PDF). NASA Facts. NASA. 11 October 2017. FS-2017-09-92-MSFC. Retrieved 4 September 2018.
  122. ^ a b Harbaugh, Jennifer (9 July 2018). "The Great Escape: SLS Provides Power for Missions to the Moon". NASA. Retrieved 4 September 2018.
  123. ^ Creech, Stephen (April 2014). "NASA's Space Launch System: A Capability for Deep Space Exploration" (PDF). NASA. p. 2. Retrieved 4 September 2018.
  124. ^ a b Musk, Elon [@elonmusk] (31 March 2020). "@Erdayastronaut @SpaceX @flightclubio Mass of initial SN ships will be a little high & Isp a little low, but, over time, it will be ~150t to LEO fully reusable" (Tweet). Archived from the original on 8 December 2022. Retrieved 20 March 2023 – via Twitter.
  125. ^ "Starship Users Guide" (PDF). spacex.com. Retrieved 1 April 2020.
  126. ^ a b c "Relativity Space Shares Updated Go-to-Market Approach for Terran R, Taking Aim at Medium to Heavy Payload Category with Next-Generation Rocket". Relativity Space (Press release). 12 April 2023. Retrieved 12 April 2023.
  127. ^ a b c "Rocket Rundown – A Fleet Overview" (PDF). ULA. November 2019. Retrieved April 14, 2020.
  128. ^ "ULA Sets Path Forward for Inaugural Vulcan Flight Test". www.ulalaunch.com. Retrieved 2022-10-14.
  129. ^ a b Jones, Andrew (28 June 2021). "China's super heavy rocket to construct space-based solar power station". Retrieved 8 January 2022.
  130. ^ "China to develop new series of carrier rockets: expert". Xinhua.net. 2 July 2018. Archived from the original on July 2, 2018. Retrieved 25 September 2018.
  131. ^ Jones, Andrew (5 July 2018). "China reveals details for super-heavy-lift Long March 9 and reusable Long March 8 rockets". SpaceNews. Retrieved 4 September 2018.
  132. ^ a b Lin, Jeffrey; Singer, P.W. (18 December 2017). "China could become a major space power by 2050". Popular Science. Retrieved 4 September 2018.
  133. ^ China 'N Asia Spaceflight 🚀🛰️🙏 [@CNSpaceflight] (9 January 2023). "GAPACTIC-ENERGY's another important goal is to develop the reusable kerosene fueled rocket PALLAS-1, which is now targeted in 2024 for first launch https://t.co/TMrTZ6ZD8D https://t.co/xPKe0mVIBB" (Tweet). Archived from the original on 11 January 2023. Retrieved 20 March 2023 – via Twitter.
  134. ^ a b c d e f Lagier, Roland (March 2018). "Ariane 6 User's Manual Issue 1 Revision 0" (PDF). Arianespace. Archived from the original (PDF) on 11 November 2020. Retrieved 27 May 2018.
  135. ^ a b Berger, Eric (2023-05-12). "The Ariane 6 rocket will now debut no earlier than the spring of 2024". Ars Technica. Retrieved 2023-05-16.
  136. ^ a b Boucher, Marc (14 March 2017). "Exclusive: Maritime Launch Services Selects Nova Scotia Site for Spaceport Over 13 Other Locations". SpaceQ. Retrieved 18 March 2017.
  137. ^ Krebs, Gunter. "Tsiklon-4M (Cyclone-4M)". Gunter's Space Page. Retrieved 11 April 2017.
  138. ^ "Precious Payload allies with Maritime Launch + adds Canada's 1st commercial spaceport to the Launch.ctrl marketplace for smallsat interests – SatNews". news.satnews.com. Retrieved 2022-12-29.
  139. ^ "PLD Space, la ambición de lanzar satélites con cohetes reutilizables" [PLD Space, and the ambition to launch satellites with reusable rockets]. El País (in Spanish). 11 August 2020. Retrieved 17 August 2020.
  140. ^ "About us". Orbex. Retrieved 4 September 2018. Orbex can accommodate a range of payload capacities between 100kg-220kg, to altitudes of between 200km-1250km.
  141. ^ Foust, Jeff (18 July 2018). "Orbex stakes claim to European smallsat launch market". SpaceNews. Retrieved 4 September 2018.
  142. ^ Foust, Jeff (2022-10-18). "Orbex raises Series C round". SpaceNews. Retrieved 2022-10-19.
  143. ^ a b "LAUNCHER – Rocket Factory Augsburg". Retrieved 2021-09-18.
  144. ^ "Shetland's SaxaVord spaceport will soon be launching satellites into orbit". Express. 24 June 2023. Retrieved 25 June 2023.
  145. ^ a b "Skyrora XL Rocket | Skyrora". www.skyrora.com. Retrieved 2022-08-19.
  146. ^ a b "Spectrum". Isar Aerospace. Retrieved 2022-03-05.
  147. ^ "German Launch Providers Isar Aerospace and RFA Eye Maiden Launches in 2023 – Parabolic Arc". 10 August 2022. Retrieved 2022-08-13.
  148. ^ "Vega E: M10 motor / Mira". Avio. Archived from the original on 19 April 2019. Retrieved 7 June 2018.
  149. ^ a b Berger, Eric (7 October 2020). "Russian space corporation unveils planned "Amur" rocket—and it looks familiar". Ars Technica. Retrieved 7 October 2020.
  150. ^ Zak, Anatoly (7 August 2017). "Preliminary design for Soyuz-5 races to completion". Russian Space Web. Retrieved 2 September 2018.
  151. ^ "Первый пуск "Союза-5" запланировали на 2024 год" [First launch of Soyuz-5 scheduled for 2024]. TASS (in Russian). 30 January 2023. Retrieved 30 January 2023.
  152. ^ Zak, Anatoly (19 February 2019). "The Yenisei super-heavy rocket". RussianSpaceWeb. Retrieved 20 February 2019.
  153. ^ "Russia to launch super-heavy rocket to Moon in 2032–2035". TASS. 23 January 2018. Retrieved 6 June 2018.
  154. ^ Zak, Anatoly (24 November 2017). "Russia charts new roadmap to super-heavy rocket". Russian Space Web. Retrieved 6 June 2018.
  155. ^ Zak, Anatoly (8 February 2019). "Russia Is Now Working on a Super Heavy Rocket of Its Own". Popular Mechanics. Retrieved 20 February 2019.
  156. ^ "Roscosmos unveils characteristics of super-heavy rockets for flights to the Moon (In Russian)". RIA NOVOSTI. 24 April 2019.
  157. ^ "5 Indian space startups to watch in 2023". Techcircle. 2022-12-26. Retrieved 2022-12-29.
  158. ^ a b c "Launch Vehicle". Skyroot Aerospace. 2019-01-10. Archived from the original on 2020-12-15. Retrieved 2019-04-21.
  159. ^ "Skyroot Aerospace". Skyroot Aerospace. Retrieved 2019-04-21.
  160. ^ "Skyroot Aerospace's Mission Prarambh: A closer look at India's first private rocket launch". Moneycontrol. Retrieved 2022-11-11.
  161. ^ Werner, Debra (9 August 2018). "Japan's Interstellar Technologies goes full throttle toward small orbital rocket". SpaceNews. Retrieved 11 August 2018.
  162. ^ Yamanaka, Hirofumi; Kugai, Shoko (27 May 2020). "LNG-powered rocket offers boost to Japan's private space industry". Nikkei Asia. Retrieved 30 April 2021.
  163. ^ "LAUNCH". Gilmour Space. Retrieved 2021-05-29.
  164. ^ "Gilmour Space announces first 'Caravan' rideshare mission to LEO". Gilmour Space Technologies (Press release). 19 September 2022. Retrieved 19 September 2022. [The company] is expecting to launch its first Eris vehicle from the Bowen Orbital Spaceport in Queensland, Australia, early next year.
  165. ^ "IRGC Launches Satellite Carrier into Space - Politics news". Tasnim News Agency. Retrieved 2022-11-07.
  166. ^ Axe, David. "Iran's New Space Rocket Could Double As A Nuclear Missile". Forbes. Retrieved 2021-03-08.
  167. ^ a b c d e f g h i j k l m n o p q r Krebs, Gunter. "Ariane-1, -2, -3, -4". Gunter's Space Page. Retrieved 2 August 2011.
  168. ^ a b c d e f g h i Krebs, Gunter. "Ariane-5". Gunter's Space Page. Retrieved 31 December 2021.
  169. ^ "Ariane 5". andegraf.com. Archived from the original on November 28, 2015. Retrieved April 27, 2018.
  170. ^ "Final launch of Ariane 5 GS completes busy year / Launchers / Our Activities / ESA". European Space Agency. 2009-12-19. Retrieved 2013-11-04.
  171. ^ a b "Ariane 5 Users Manual" (PDF). Issue 4. Arianespace. p. 39 (ISS orbit). Archived from the original (PDF) on 27 September 2007. Retrieved 13 November 2007.
  172. ^ "Ariane 5 sets new record on latest launch". ESA. 24 October 2021. Retrieved 25 October 2021.
  173. ^ "Welcome To ISRO :: Launch Vehicles". ISRO. Retrieved 2013-11-04.
  174. ^ a b Krebs, Gunter. "SLV-3 / ASLV". Gunter's Space Page. Retrieved 18 December 2016.
  175. ^ "Athena-1 (LLV-1 / LMLV-1)".
  176. ^ "Athena-1". Astronautix.com. Archived from the original on 2013-10-20. Retrieved 2013-11-04.
  177. ^ NASA, Athena Mission Planner's Guide 26 August 2012
  178. ^ "Athena-2". Astronautix.com. Archived from the original on 2013-11-08. Retrieved 2013-11-04.
  179. ^ "Athena-2 (LLV-2 / LMLV-2)".
  180. ^ "Atlas Centaur LV-3C Development". 25 March 2023.
  181. ^ "Atlas Centaur".
  182. ^ a b c d e f g h i j k l m n o p q r s t u v w Krebs, Gunter. "Atlas Centaur". Gunter's Space Page. Retrieved 1 August 2011.
  183. ^ astronautix.com, Atlas H
  184. ^ astronautix.com, Atlas IIIB Archived 2002-05-01 at the Wayback Machine
  185. ^ "ULA launches two space surveillance satellites for U.S. Space Force". SpaceNews. 2022-01-21. Retrieved 2022-01-24.
  186. ^ Encyclopedia Astronautica, Black Arrow Archived 2007-12-06 at the Wayback Machine
  187. ^ astronautix.com, Titan III Archived 2014-12-25 at the Wayback Machine
  188. ^ "WMO OSCAR – Satellite: NOAA-3".
  189. ^ "NASA – NSSDCA – Spacecraft – Details".
  190. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba Krebs, Gunter. "Delta". Gunter's Space Page. Retrieved 16 September 2018.
  191. ^ Wade, Mark. "Delta 0300". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  192. ^ Wade, Mark. "Delta 0900". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  193. ^ "GEOS 3".
  194. ^ "1972 – 2616 – Flight Archive".
  195. ^ "OSO 8".
  196. ^ "Explorer: RAE B".
  197. ^ "Delta-1914".
  198. ^ "NASA – NSSDCA – Spacecraft – Details".
  199. ^ "Skynet 2A, 2B".
  200. ^ a b Wade, Mark. "Delta 2913". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  201. ^ "Explorer: DE 1, 2".
  202. ^ Wade, Mark. "Delta 4000". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  203. ^ Wade, Mark. "Delta 5000". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  204. ^ a b Krebs, Gunter. "Dnepr". Gunter's Space Page. Retrieved 18 December 2016.
  205. ^ Clark, Stephen (30 December 2016). "Iridium satellites closed up for launch on Falcon 9 rocket". Spaceflight Now. Retrieved 30 December 2016. Russian officials have said they plan to discontinue Dnepr launches.
  206. ^ a b c d "S.P.Korolev RSC Energia – LAUNCHERS". Energia. Archived from the original on 2016-03-03. Retrieved 2010-08-01.
  207. ^ Wade, Mark. "Energia". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 9 August 2010.
  208. ^ a b Krebs, Gunter. "Falcon-1". Gunter's Space Page. Retrieved 18 December 2016.
  209. ^ SpaceX [@SpaceX] (26 January 2023). "Falcon 9 launches to orbit 56 Starlink satellites—weighing in total more than 17.4 metric tons—marking the heaviest payload ever flown on Falcon https://t.co/qrgjnm6tUQ" (Tweet). Archived from the original on 9 March 2023. Retrieved 20 March 2023 – via Twitter.
  210. ^ de Selding, Peter B. (June 15, 2016). "Iridium's SpaceX launch slowed by Vandenberg bottleneck". SpaceNews. Retrieved June 21, 2016.
  211. ^ Krebs, Gunter. "Falcon-9 v1.2 (Falcon-9FT)". Gunter's Space Page. Retrieved 19 November 2018.
  212. ^ Krebs, Gunter. "Falcon-9 v1.2 (Block 5) (Falcon-9FT (Block 5))". Gunter's Space Page. Retrieved 20 November 2019.
  213. ^ Malik, Tariq (1 September 2016). "Launchpad Explosion Destroys SpaceX Falcon 9 Rocket, Satellite in Florida". Space.com. Retrieved 1 September 2016.
  214. ^ Krebs, Gunter. "Falcon-9 v1.2(ex) (Falcon-9FT(ex))". Gunter's Space Page. Retrieved 29 June 2018.
  215. ^ Krebs, Gunter. "Falcon-9 v1.2 (Block 5)(ex) (Falcon-9FT (Block 5)(ex))". Gunter's Space Page. Retrieved 10 August 2019.
  216. ^ a b "Falcon 9". SpaceX. 2012-11-16. Archived from the original on 5 August 2014.
  217. ^ Krebs, Gunter. "Falcon-9". Gunter's Space Page. Retrieved 24 May 2018.
  218. ^ Feng Bao 1, part of CZ family
  219. ^ Krebs, Gunter. "FB-1 (Feng Bao-1)". Gunter's Space Page. Retrieved 17 August 2018.
  220. ^ a b c d e Krebs, Gunter. "GSLV". Gunter's Space Page. Retrieved 18 December 2016.
  221. ^ "JERS (Fuyo)".
  222. ^ astronautix.com, H-2 Archived 2008-07-06 at the Wayback Machine
  223. ^ a b Krebs, Gunter. "H-2". Gunter's Space Page. Retrieved 1 August 2011.
  224. ^ astronautix.com H-IIA 2024 Archived 2011-10-11 at the Wayback Machine
  225. ^ Krebs, Gunter. "H-2B". Gunter's Space Page. Retrieved 24 September 2019.
  226. ^ a b c d e f g h "Nissan Heritage Collection online【その他】プリンス自動車工業小史". Nissan Motors. Retrieved 8 March 2011.
  227. ^ "JAXA – J-I Launch Vehicle".
  228. ^ astronautix.com Kaituozhe-1, also called KY-1 Archived 2008-05-12 at the Wayback Machine
  229. ^ "Cosmos-1, 3, 3M and 3MU – SL-8 – C-1".
  230. ^ "Kosmos-3M (11K65M)". Archived from the original on 2013-06-02. Retrieved 2015-12-21.
  231. ^ a b c d e f g "Satellite Launch Vehicles". Institute of Space and Astronautical Science (ISAS). Retrieved 4 March 2011.
  232. ^ astronautix.com, Long March 1, also called CZ-1
  233. ^ a b Krebs, Gunter. "CZ-1 (Chang Zheng-1)". Gunter's Space Page. Retrieved 12 February 2014.
  234. ^ astronautix.com, Long March 1D (CZ-1D) Archived 2002-05-25 at the Wayback Machine
  235. ^ astronautix.com Long March 2A – CZ-2A Archived 2008-05-16 at the Wayback Machine
  236. ^ astronautix.com, Encyclopedia Astronautica, Molniya 8K78M Archived 2012-05-08 at the Wayback Machine
  237. ^ Krebs, Gunter. "Molniya (8K78)". Gunter's Space Page. Retrieved 18 December 2016.
  238. ^ "US-K (73D6)".
  239. ^ Krebs, Gunter. "Molniya and Soyuz with upper stages". Gunter's Space Page. Retrieved 18 December 2016.
  240. ^ "Complex N1-L3". Energia.ru. Archived from the original on 2016-10-30. Retrieved 2013-11-04.
  241. ^ "L3". Astronautix.com. Archived from the original on 2012-12-01. Retrieved 2013-11-04.
  242. ^ "RSC "Energia" – History". Energia.ru. 2011-04-12. Archived from the original on 2016-10-30. Retrieved 2013-11-04.
  243. ^ Wade, Mark. "N1". Encyclopedia Astronautica. Archived from the original on June 12, 2002. Retrieved 9 August 2010.
  244. ^ astronautix.com, N-I- Delta Archived 2008-07-24 at the Wayback Machine
  245. ^ astronautix.com, Encyclopedia Astronautica, N-2 Archived 2013-11-08 at the Wayback Machine
  246. ^ "STSAT 2C".
  247. ^ LePage, Andrew J. (July 1998). "NOTSNIK: The Navy's Secret Satellite Program". Spaceviews. Archived from the original on May 21, 2003. Retrieved 2009-01-17.
  248. ^ Encyclopedia Astronautica, Proton-K
  249. ^ "Launch Vehicles". Archived from the original on 2015-11-06. Retrieved 2015-12-18.
  250. ^ "Proton". Astronautix.com. Archived from the original on September 13, 2008. Retrieved 2013-11-04.
  251. ^ "Outcome Budget 2016–2017" (PDF). Government of India, Department of Space. 2016. Archived from the original (PDF) on 25 June 2017. Retrieved 15 September 2018. Currently, two versions of PSLV are operational, namely PSLV-XL (with six extended version of Strap-on motors) and the PSLV Core-alone (without Strap-on motors).
  252. ^ a b Vance, Ashlee (3 February 2020). "A Small-Rocket Maker Is Running a Different Kind of Space Race". Bloomberg News. Retrieved 3 February 2020.
  253. ^ "Astra cancels Rocket 3 to focus on larger vehicle". SpaceNews. 2022-08-05. Retrieved 2022-08-12.
  254. ^ a b Krebs, Gunter. "Rokot (Rockot)". Gunter's Space Page. Retrieved 31 August 2019.
  255. ^ a b c Krebs, Gunter. "Safir". Gunter's Space Pages. Retrieved 2 March 2019.
  256. ^ astronautix.com, Saturn I Archived 2010-12-07 at the Wayback Machine
  257. ^ a b "Saturn-1 & Saturn-1B". Space.skyrocket.de. Retrieved 2013-11-04.
  258. ^ Encyclopedia Astronautica, Saturn IB Archived 2011-05-14 at the Wayback Machine
  259. ^ Bilstein, Roger E. "Appendix C: Saturn Family/Mission Data". Stages to Saturn A Technological History of the Apollo/Saturn Launch Vehicles. NASA History Office. Retrieved 7 April 2011.
  260. ^ Alternatives for Future U.S. Space-Launch Capabilities (PDF), The Congress of the United States. Congressional Budget Office, October 2006, pp. X, 1, 4, 9
  261. ^ Thomas P. Stafford (1991), America at the Threshold – Report of the Synthesis Group on America's Space Exploration Initiative, p. 31
  262. ^ "Rocket and Space Technology". Braeunig.us. Retrieved 2013-11-04.
  263. ^ Alan Lawrie and Robert Godwin, Saturn, 2005 (paperback, Apogee Books Space Series, 2010), ISBN 1-894959-19-1
  264. ^ John Duncan, Saturn V Flight History Archived 2011-08-05 at the Wayback Machine (1999), web page (accessed 20 August 2010)
  265. ^ "Vysota / Volna / Shtil".
  266. ^ a b c "Vysota / Volna / Shtil". Retrieved 2014-12-23.
  267. ^ a b c "SLV-3". Retrieved 13 February 2014.
  268. ^ Krebs, Gunter. "Soyuz (11A511)". Gunter's Space Page. Retrieved 20 December 2016.
  269. ^ "Soyuz-FG Launch Vehicle". Progress Rocket Space Centre. Retrieved 16 May 2015.
  270. ^ Krebs, Gunter. "Soyuz-FG (11A511U-FG)". Gunter's Space Page. Retrieved 25 September 2019.
  271. ^ Krebs, Gunter. "Soyuz-L (11A511L)". Gunter's Space Page. Retrieved 20 December 2016.
  272. ^ Krebs, Gunter. "Soyuz-M (11A511M)". Gunter's Space Page. Retrieved 20 December 2016.
  273. ^ "Soyuz-ST". Encyclopedia Astronautica. Archived from the original on 24 August 2015. Retrieved 17 May 2015.
  274. ^ a b "Soyuz-ST Launch Vehicle". Progress Rocket Space Centre. Retrieved 17 May 2015.
  275. ^ "Soyuz 2 Launch Vehicle". Russian Space Web. Retrieved 19 May 2015.
  276. ^ "Soyuz overview". Arianespace. Retrieved 7 June 2018.
  277. ^ a b "Soyuz-U Launch Vehicle". JSC "RCC" Progress. Retrieved 16 May 2015.
  278. ^ Krebs, Gunter. "Soyuz-U (11A511U)". Gunter's Space Page. Retrieved 20 December 2016.
  279. ^ Krebs, Gunter. "Soyuz-U2 (11A511U2)". Gunter's Space Page. Retrieved 20 December 2016.
  280. ^ a b Krebs, Gunter. "Shuttle (STS)". Gunter's Space Page. Retrieved 14 July 2014.
  281. ^ "SPACE TRANSPORTATION SYSTEM PAYLOADS". Kennedy Space Center. 2000. Archived from the original on 17 July 2014. Retrieved 14 July 2014.
  282. ^ "NASA – Space Shuttle". NASA. Retrieved 2012-07-25.
  283. ^ "Sputnik 2 (PS-2 #1)".
  284. ^ a b Krebs, Gunter. "SS-520". Gunter's Space Page. Retrieved 5 November 2017.
  285. ^ Graham, William (3 February 2018). "Japanese sounding rocket claims record-breaking orbital launch". NASASpaceFlight. Retrieved 3 February 2018.
  286. ^ "Experimental Launch of World's Smallest Orbital Space Rocket ends in Failure". Spaceflight 101. 14 January 2017. Retrieved 5 November 2017.
  287. ^ "EROS B".
  288. ^ "Start-1".
  289. ^ "Strela launcher".
  290. ^ "Strela". Gunter's Space Page. Retrieved 23 Dec 2014.
  291. ^ "Terran". Relativity Space. Retrieved 3 February 2022.
  292. ^ astronautix.com, Titan II GLV Archived 2016-02-28 at the Wayback Machine
  293. ^ astronautix.com, Titan 23G Archived 2016-03-04 at the Wayback Machine
  294. ^ Encyclopedia Astronautica, Titan 3A Archived 2008-03-07 at the Wayback Machine
  295. ^ Encyclopedia Astronautica, Titan 3B Archived 2012-10-25 at the Wayback Machine
  296. ^ astronautix.com, Titan IIIC Archived 2014-12-25 at the Wayback Machine
  297. ^ astronautix.com, Titan IIID Archived 2016-03-04 at the Wayback Machine
  298. ^ astronautix.com, Titan IIIE Archived 2015-12-02 at the Wayback Machine
  299. ^ astronautix.com, Titan 34D Archived 2008-06-30 at the Wayback Machine
  300. ^ a b "Titan-4". Gunter's Space Page. Retrieved 14 July 2014.
  301. ^ a b "Titan-4". Space.skyrocket.de. Retrieved 2013-11-04.
  302. ^ a b "Fact Sheet – Titan IVB". United States Air Force. Retrieved 2007-11-12.[permanent dead link]
  303. ^ astronautix.com, Tsyklon-2A Archived 2013-05-22 at the Wayback Machine
  304. ^ "Tsiklon-2A (11K67)". Space.skyrocket.de. Retrieved 2013-11-04.
  305. ^ astronautix.com, Tsyklon-2 Archived 2013-05-22 at the Wayback Machine
  306. ^ a b "Tsiklon-2 (11K69)". Space.skyrocket.de. Retrieved 2013-11-04.
  307. ^ nasaspaceflight.com, Tsyklon-3
  308. ^ a b "Tsiklon-3 (11K68)". Space.skyrocket.de. Retrieved 2013-11-04.
  309. ^ astronautix.com, vanguard Archived 2002-05-06 at the Wayback Machine
  310. ^ "VLS".
  311. ^ "IRDT 1, 2, 2R".
  312. ^ Handbook of Space Engineering, Archaeology, and Heritage by Ann Darrin, Beth L. O'Leary, page 116
  313. ^ "NASA – NSSDCA – Spacecraft – Details".
  314. ^ a b "Spacecraft – Vostok".
  315. ^ "Meteor-2 (11F632)".
  316. ^ astronautix.com, Soyuz/Vostok Archived 2010-01-07 at the Wayback Machine
  317. ^ a b Ed Kyle. "Zenit Data Sheet". Spacelaunchreport.com. Retrieved 2013-11-04.
  318. ^ a b Krebs, Gunter. "Zenit-2". Gunter's Space Pages. Retrieved 20 December 2016.
  319. ^ "Zenit launch vehicle". Russianspaceweb.com. Retrieved 2013-11-04.
  320. ^ "Elektro-L 1, 2, 3".
  321. ^ a b c d e Krebs, Gunter. "Zenit-3". Gunter's Space Page. Retrieved 28 December 2017.
  322. ^ Jones, Andrew (2 August 2018). "Landspace of China to launch first rocket in Q4 2018". SpaceNews. Retrieved 16 August 2018.
  323. ^ a b Barbosa, Rui C. (27 October 2018). "Chinese commercial provider LandSpace launches Weilai-1 on a Zhuque-1 rockets – fails to make orbit". NASASpaceFlight.com. Retrieved 27 October 2018.