Jump to content

31 (number)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Songwaters (talk | contribs) at 17:01, 23 July 2020 (In sports). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

← 30 31 32 →
Cardinalthirty-one
Ordinal31st
(thirty-first)
Factorizationprime
Prime11th
Divisors1, 31
Greek numeralΛΑ´
Roman numeralXXXI, xxxi
Binary111112
Ternary10113
Senary516
Octal378
Duodecimal2712
Hexadecimal1F16

31 (thirty-one) is the natural number following 30 and preceding 32.

In mathematics

31 is the number of regular polygons with an odd number of sides that are known to be constructible with compass and straightedge.

31 is the third Mersenne prime (25 − 1)[1] and the eighth Mersenne prime exponent, as well as the fourth primorial prime, and together with twenty-nine, another primorial prime, it comprises a twin prime. As a Mersenne prime, 31 is related to the perfect number 496, since 496 = 2(5 − 1)(25 − 1). 31 is also the 4th lucky prime[2] and the 11th supersingular prime.[3]

31 is a centered triangular number,[4] the lowest prime centered pentagonal number[5] and a centered decagonal number.[6]

31 is the eighth happy number.[7]

For the Steiner tree problem, 31 is the number of possible Steiner topologies for Steiner trees with 4 terminals.

At 31, the Mertens function sets a new low of −4, a value which is not subceded until 110.

31 is a centered pentagonal number

No integer added up to its base 10 digits results in 31, making 31 a self number.[8]

31 is a repdigit in base 5 (111), and base 2 (11111).

The numbers 31, 331, 3331, 33331, 333331, 3333331, and 33333331 are all prime. For a time it was thought that every number of the form 3w1 would be prime. However, the next nine numbers of the sequence are composite; their factorisations are:

  • 333333331 = 17 × 19607843
  • 3333333331 = 673 × 4952947
  • 33333333331 = 307 × 108577633
  • 333333333331 = 19 × 83 × 211371803
  • 3333333333331 = 523 × 3049 × 2090353
  • 33333333333331 = 607 × 1511 × 1997 × 18199
  • 333333333333331 = 181 × 1841620626151
  • 3333333333333331 = 199 × 16750418760469 and
  • 33333333333333331 = 31 × 1499 × 717324094199.

The recurrence of the factor 31 in the last number above can be used to prove that no sequence of the type RwE or ERw can consist only of primes because every prime in the sequence will periodically divide further numbers.[citation needed] Here, 31 divides every fifteenth number in 3w1 (and 331 every 110th).

In science

Astronomy

In sports

In other fields

Thirty-one is also:

References

  1. ^ "Sloane's A000668 : Mersenne primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  2. ^ "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  3. ^ "Sloane's A002267 : The 15 supersingular primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  4. ^ "Sloane's A005448 : Centered triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  5. ^ "Sloane's A005891 : Centered pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  6. ^ "Sloane's A062786 : Centered 10-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  7. ^ "Sloane's A007770 : Happy numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  8. ^ "Sloane's A003052 : Self numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.