From Wikipedia, the free encyclopedia
Jump to: navigation, search
Genistein molecule
CAS number 446-72-0 YesY
PubChem 5280961
ChemSpider 4444448 YesY
DrugBank DB01645
KEGG C06563 YesY
ChEBI CHEBI:28088 YesY
Jmol-3D images Image 1
Molecular formula C15H10O5
Molar mass 270.24 g mol−1
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY (verify) (what is: YesY/N?)
Infobox references

Genistein is a phytoestrogen and belongs to the category of isoflavones. Genistein was first isolated in 1899 from the dyer's broom, Genista tinctoria; hence, the chemical name derived from the generic name. The compound nucleus was established in 1926, when it was found to be identical with prunetol. It was chemically synthesized in 1928.[1]

Natural occurrences[edit]

Isoflavones such as genistein and daidzein are found in a number of plants including lupin, fava beans, soybeans, kudzu, and psoralea being the primary food source,[2][3] also in the medicinal plants, Flemingia vestita[4] and F. macrophylla,[5][6] and coffee.[7] It can also be found in Maackia amurensis cell cultures.[8]

Extraction and purification[edit]

Most of the isoflavones in plants are present in a glycosylated form. The unglycosylated aglycones can be obtained through various means such as treatment with the enzyme β-glucosidase, acid treatment of soybeans followed by solvent extraction, or by chemical synthesis.[9] Acid treatment is a harsh method as concentrated inorganic acids are used. Both enzyme treatment and chemical synthesis are costly. A more economical process consisting of fermentation for in situ production of β-glucosidase to isolate genistein has been recently investigated.[10]

Biological effects[edit]

Besides functioning as antioxidant and anthelmintic, many isoflavones have been shown to interact with animal and human estrogen receptors, causing effects in the body similar to those caused by the hormone estrogen. Isoflavones also produce non-hormonal effects.

Molecular function[edit]

Genistein influences multiple biochemical functions in living cells:

Activation of PPARs[edit]

Isoflavones genistein and daidzein bind to and transactivate all three PPAR isoforms, α, δ, and γ.[15] For example, membrane-bound PPARγ-binding assay showed that genistein can directly interact with the PPARγ ligand binding domain and has a measurable Ki of 5.7 mM.[16] Gene reporter assays showed that genistein at concentrations between 1 and 100 uM activated PPARs in a dose dependent way in KS483 mesenchymal progenitor cells, breast cancer MCF-7 cells, T47D cells and MDA-MD-231 cells, murine macrophage-like RAW 264.7 cells, endothelial cells and in Hela cells. Several studies have shown that both ERs and PPARs influenced each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.[17][18][19]

Tyrosine kinase inhibitor[edit]

The main known activity of genistein is tyrosine kinase inhibitor, mostly of epidermal growth factor receptor (EGFR). Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades.

Redox-active — not only antioxidant[edit]

Genistein may act as direct antioxidant, similar to many other isoflavones, and thus may alleviate damaging effects of free radicals in tissues.[20][21]

The same molecule of genistein, similar to many other isoflavones, by generation of free radicals poison topoisomerase II, an enzyme important for maintaining DNA stability.[22][23][24]

Human cells turn on beneficial, detoxyfying Nrf2 factor in response to genistein insult. This pathway may be responsible for observed health maintaining properities of small doses of genistein.[25]


The root-tuber peel extract of the leguminous plant Felmingia vestita is the traditional anthelmitic of the Khasi tribes of India. While investigating its anthelmintic activity, genistein was found to be the major isoflavone responsible for the deworming property.[4][26] Genistein was subsequently demonstrated to be highly effective against intestinal parasites such as the poultry cestode Raillietina echinobothrida,[26] the pork trematode Fasciolopsis buski,[27] and the sheep liver fluke Fasciola hepatica.[28] It exerts its anthelmintic activity by inhibiting the enzymes of glycolysis and glycogenolysis,[29][30] and disturbing the Ca2+ homeostasis and NO activity in the parasites.[31][32] It has also been investigated in human tapeworms such as Echinococcus multilocularis and E. granulosus metacestodes that genistein and its derivatives, Rm6423 and Rm6426, are potent cestocides.[33]


Genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis.[34]

Cancer links[edit]

Genistein and other isoflavones have been identified as angiogenesis inhibitors, and found to inhibit the uncontrolled cell growth of cancer, most likely by inhibiting the activity of substances in the body that regulate cell division and cell survival (growth factors). Various studies have found that moderate doses of genistein have inhibitory effects on cancers of the prostate,[35][36] cervix,[37] brain,[38] breast[35][39][40] and colon.[13] It has also been shown that genistein makes some cells more sensitive to radio-therapy.;[41] although, timing of phytoestrogen use is also important [41]

Genistein's chief method of activity is as a tyrosine kinase inhibitor. Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades. Inhibition of DNA topoisomerase II also plays an important role in the cytotoxic activity of genistein.[42][43] Genistein has been used to selectively target pre B-cells via conjugation with an anti-CD19 antibody.[44]

Studies on rodents have found genistein to be useful in the treatment of leukemia, and that it can be used in combination with certain other antileukemic drugs to improve their efficacy.[45]

Estrogen receptor — more cancer links[edit]

Due to its structure similarity to 17β-estradiol (estrogen), genistein can compete with it and bind to estrogen receptors. However, genistein shows much higher affinity toward estrogen receptor β than toward estrogen receptor α.[46]
Data from in vitro and in vivo research confirms that genistein can increase rate of growth of some ER expressing breast cancers. Genistein was found to increase the rate of proliferation of estrogen-dependent breast cancer when not cotreated with an estrogen antagonist.[47][48][49] It was also found to decrease efficiency of tamoxifen and letrozole - drugs commonly used in breast cancer therapy.[50][51] Genistein was found to inhibit immune response towards cancer cells allowing their survival.[52]

Effects in males[edit]

Isoflavones can act like estrogen, stimulating development and maintenance of female characteristics, or they can block cells from using cousins of estrogen. In vitro studies have shown genistein to induce apoptosis of testicular cells at certain levels, thus raising concerns about effects it could have on male fertility;[53] however, a recent study found that isoflavones had "no observable effect on endocrine measurements, testicular volume or semen parameters over the study period." in healthy males given isoflavone supplements daily over a 2-month period.[54]

Carcinogenic and toxic potential[edit]

Genistein was, among other flavonoids, found to be a strong topoisomerase inhibitor, similarly to some chemotherapeutic anticancer drugs ex. etoposide and doxorubicin.[55][56] In high doses it was found to be strongly toxic to normal cells.[57] This effect may be responsible for both anticarcinogenic and carcinogenic potential of the substance.[58][59] It was found to deteriorate DNA of cultured blood stem cells, what may lead to leukemia.[60] Genistein among other flavonoids is suspected to increase risk of infant leukemia when consumed during pregnancy.[61][62]

Sanfilippo syndrome treatment[edit]

Genistein decreases pathological accumulation of glycosaminoglycans in Sanfilippo syndrome. In vitro animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by adequate dose of genistein.[63] Genistein was found to also possess toxic properties toward brain cells.[57] Among many pathways stimulated by genistein, autophagy may explain the observed efficiency of the substance as autophagy is significantly impaired in the disease.[64][65]

Related compounds[edit]


Genistin is the 7-O-beta-D-glucoside of genistein.

Acetylated compounds[edit]

Wighteone is the 6-isopentenyl genistein (6-prenyl-5,7,4'-trihydroxyisoflavone)

Pharmaceutical derivatives[edit]


  1. ^ Walter ED (1941). "Genistin (an isoflavone glucoside) and its aglucone, genistein, from soybeans". J Am Chem Soc 62 (12): 3273–3276. doi:10.1021/ja01857a013. 
  2. ^ Coward L, Barnes NC, Setchell KDR, Barnes S (1993). "Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets". Journal of Agricultural and Food Chemistry 41 (11): 1961–1967. doi:10.1021/jf00035a027. 
  3. ^ Kaufman PB, Duke JA, Brielmann H, Boik J, Hoyt JE (1997). "A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health.". J Altern Complement Med 3 (1): 7–12. doi:10.1089/acm.1997.3.7. PMID 9395689. 
  4. ^ a b Rao, HSP, Reddy, KS (1991). "Isofavones from Flemingia vestita". Fitoterapia 62 (5): 458. 
  5. ^ Li BQ, Song QS (2009). "Chemical constituents in roots of Flemingia macrophylla". Chinese Traditional and Herbal Drugs 40 (2): epub. doi:10.1016/S0031-9422(00)80163-6. 
  6. ^ Wang BS, Juang LJ, Yang JJ, Chen LY, Tai HM, Huan MH (2012). "Antioxidant and antityrosinase activity of Flemingia macrophylla and Glycine tomentella roots". Evidence-Based Complementary and Alternative Medicine 2012: 1–7. doi:10.1155/2012/431081. PMID 22997529. 431081. 
  7. ^ Alves RC, Almeida IM, Casal S, Oliveira MB. (2010). "Isoflavones in coffee: influence of species, roast degree, and brewing method.". Journal of Agricultural and Food Chemistry 58 (5): 3002–3007. doi:10.1021/jf9039205. PMID 20131840. 
  8. ^ Fedoreyev SA, Pokushalov TV, Veselova MV, Glebko LI, Kulesh NI, Muzarok TI, Seletskaya LD, Bulgakov VP and Zhuravlev YN (2000). "Isoflavonoid production by callus cultures of Maackia amurensis". Fitoterapia 71 (4): 365–72. doi:10.1016/S0367-326X(00)00129-5. PMID 10925005. 
  9. ^ Prakash O, Tanwar MP (1995). "Hypervalent iodine oxidation of favanones: Convenient and useful syntheses of favones and isofavones". J Chem Res. 26: 1429–1447. 
  10. ^ Pandit, N. T., & Patravale, V. B.; Patravale (2011). "Design and optimization of a novel method for extraction of genistein". Indian journal of pharmaceutical sciences 73 (2): 184–92. doi:10.4103/0250-474x.91583. PMC 3267303. PMID 22303062. 
  11. ^ Gossner, G.; Choi, M.; Tan, L.; Fogoros, S.; Griffith, KA.; Kuenker, M.; Liu, JR. (Apr 2007). "Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells". Gynecol Oncol 105 (1): 23–30. doi:10.1016/j.ygyno.2006.11.009. PMID 17234261. 
  12. ^ Singletary, K.; Milner, J. (Jul 2008). "Diet, autophagy, and cancer: a review". Cancer Epidemiol Biomarkers Prev 17 (7): 1596–610. doi:10.1158/1055-9965.EPI-07-2917. PMID 18628411. 
  13. ^ a b Nakamura, Y.; Yogosawa, S.; Izutani, Y.; Watanabe, H.; Otsuji, E.; Sakai, T. (2009). "A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy". Mol Cancer 8: 100. doi:10.1186/1476-4598-8-100. PMC 2784428. PMID 19909554. 
  14. ^ Fang M, Chen D, Yang CS. Dietary Polyphenols May Affect DNA Methylation. J Nutr [Internet]. 2007 Jan 1 [cited 2013 Aug 31];137(1):223S–228S. Available from:
  15. ^ Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014 Jul 29. pii: S0006-2952(14)00424-9. doi: 10.1016/j.bcp.2014.07.018. PubMed PMID: 25083916.
  16. ^ Dang, Z.C. Audinot V.; Papapoulos, S. Boutin J.A.; Löwik, C.; Boutin, JA; Löwik, CW (2003). "Peroxisome proliferator-activated receptor g (PPARg) as a molecular target for the soy phytoestrogen genistein". Journal of Biological Chemistry 278 (2): 962–967. doi:10.1074/jbc.M209483200. PMID 12421816. 
  17. ^ Dang, Z.C.; Löwik, C. (2005). "Dose-dependent effects of phytoestrogens on bone: molecular mechanisms, review paper". Trends in Endocrinology and Metabolism 16 (5): 207–213. doi:10.1016/j.tem.2005.05.001. PMID 15922618. 
  18. ^ Dang, Z.C. (2009). "Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: mechanisms of action". Obesity Review 10 (3): 342–349. doi:10.1111/j.1467-789X.2008.00554.x. PMID 19207876. 
  19. ^ Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014 Jul 29. pii: S0006-2952(14)00424-9. doi: 10.1016/j.bcp.2014.07.018. PubMed PMID: 25083916.
  20. ^ Han, RM.; Tian, YX.; Liu, Y.; Chen, CH.; Ai, XC.; Zhang, JP.; Skibsted, LH. (May 2009). "Comparison of flavonoids and isoflavonoids as antioxidants". Journal of Agricultural and Food Chemistry 57 (9): 3780–5. doi:10.1021/jf803850p. PMID 19296660. 
  21. ^ Borrás, C.; Gambini, J.; López-Grueso, R.; Pallardó, FV.; Viña, J. (Jan 2010). "Direct antioxidant and protective effect of estradiol on isolated mitochondria". Biochim Biophys Acta 1802 (1): 205–11. doi:10.1016/j.bbadis.2009.09.007. PMID 19751829. 
  22. ^ Bandele, OJ.; Osheroff, N. (May 2007). "Bioflavonoids as Poisons of Human Topoisomerase IIα and IIβ". Biochemistry 46 (20): 6097–108. doi:10.1021/bi7000664. PMC 2893030. PMID 17458941. 
  23. ^ Markovits, J.; Linassier, C.; Fossé, P.; Couprie, J.; Pierre, J.; Jacquemin-Sablon, A.; Saucier, JM.; Le Pecq, JB.; Larsen, AK. (Sep 1989). "Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II". Cancer Res 49 (18): 5111–7. PMID 2548712. 
  24. ^ López-Lazaro, M.; Willmore, E.; Austin, CA. (May 2007). "Cells lacking DNA topoisomerase II beta are resistant to genistein". J Nat Prod 70 (5): 763–7. doi:10.1021/np060609z. PMID 17411092. 
  25. ^ Mann, GE.; Bonacasa, B.; Ishii, T.; Siow, RC. (Apr 2009). "Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones". Current Opinion in Pharmacology 9 (2): 139–45. doi:10.1016/j.coph.2008.12.012. PMID 19157984. 
  26. ^ a b Tandon V, Pal P, Roy B, Rao HS, Reddy KS. (1997). "In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India". Parasitol Res 83 (5): 492–298. doi:10.1007/s004360050286. PMID 9197399. 
  27. ^ Kar PK, Tandon V, Saha N. (2002). "Anthelmintic efficacy of Flemingia vestita: genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite, Fasciolopsis buski". Parasitol Int 51 (1): 249–257. doi:10.1016/S1383-5769(02)00032-6. PMID 12243779. 
  28. ^ Toner E, Brennan GP, Wells K, McGeon JG, Fairweather I. (2008). "Physiological and morphological effects of genistein against the liver fluke, Fasciola hepatica". Parasitology 135 (10): 1189–1203. doi:10.1017/S0031182008004630. PMID 18771609. 
  29. ^ Tandon V, Das B, Saha N. (2003). "Anthelmintic efficacy of Flemingia vestita (Fabaceae): Effect of genistein on glycogen metabolism in the cestode, Raillietina echinobothrida". Parasitol Int 52 (2): 179–183. doi:10.1016/S1383-5769(03)00006-0. PMID 12798931. 
  30. ^ Das B, Tandon V, Saha N. (2004). "Anthelmintic efficacy of Flemingia vestita (Fabaceae): alteration in the activities of some glycolytic enzymes in the cestode, Raillietina echinobothrida". Parasitol Res 93 (4): 253–261. doi:10.1007/s00436-004-1122-8. PMID 15138892. 
  31. ^ Das B, Tandon V, Saha N. (2006). "Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl". Parasitol Int 55 (1): 17–21. doi:10.1016/j.parint.2005.08.002. PMID 16198617. 
  32. ^ Das B, Tandon V, Lyndem LM, Gray AI, Ferro VA. (2009). "Phytochemicals from Flemingia vestita (Fabaceae) and Stephania glabra (Menispermeaceae) alter cGMP concentration in the cestode Raillietina echinobothrida". Comp Biochem Physiol C Toxicol Pharmacol 149 (3): 397–403. doi:10.1016/j.cbpc.2008.09.012. PMID 18854226. 
  33. ^ Naguleswaran A, Spicher M, Vonlaufen N, Ortega-Mora LM, Torgerson P, Gottstein B, Hemphill A (2006). "In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones against Echinococcus multilocularis and Echinococcus granulosus". Antimicrob Agents Chemother 50 (1): 3770–3778. doi:10.1128/AAC.00578-06. PMC 1635224. PMID 16954323. 
  34. ^ Si H, Liu D (2007). "Phytochemical genistein in the regulation of vascular function: new insights". Curr. Med. Chem. 14 (24): 2581–9. doi:10.2174/092986707782023325. PMID 17979711. 
  35. ^ a b Keiko MORITO, Toshiharu HIROSE, Junei KINJO, Tomoki HIRAKAWA, Masafumi OKAWA, Toshihiro NOHARA, Sumito OGAWA, Satoshi INOUE, Masami MURAMATSU, and Yukito MASAMUNE (April 2001). "Interaction of Phytoestrogens with Estrogen Receptors a and b". Biol. Pharm. Bull. 24(4) 351—356. 
  36. ^ Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM (2009). "Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies". Nutr Cancer 61 (5): 598–606. doi:10.1080/01635580902825639. PMID 19838933. 
  37. ^ Kim SH, Kim SH, Kim YB, Jeon YT, Lee SC, Song YS (2009). "Genistein inhibits cell growth by modulating various mitogen-activated protein kinases and AKT in cervical cancer cells". Annals of the New York Academy of Sciences 1171: 495–500. doi:10.1111/j.1749-6632.2009.04899.x. PMID 19723095. 
  38. ^ Arabina DAS, Naren L. BANIK, and Swapan K. RAY (2009). "Flavonoids Activated Caspases for Apoptosis in Human Glioblastoma T98G and U87MG Cells But Not in Human Normal Astrocytes". Cancer 116 (1): 164–76. doi:10.1002/cncr.24699. PMC 3159962. PMID 19894226. 
  39. ^ Sakamoto T, Horiguchi H, Oguma E, Kayama F (2009). "Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells". J Nutr Biochem 21 (9): 856–64. doi:10.1016/j.jnutbio.2009.06.010. PMID 19800779. 
  40. ^ de Lemos ML (2001). "Effects of soy phytoestrogens genistein and daidzein on breast cancer growth". Annals of Pharmacotherapy 35 (9): 1118–21. doi:10.1345/aph.10257. PMID 11573864. 
  41. ^ a b De Assis S, Hilakivi-Clarke L (November 2006). "Timing of dietary estrogenic exposures and breast cancer risk". Annals of the New York Academy of Sciences 1089: 14–35. doi:10.1196/annals.1386.039. PMID 17261753. "The viability was decreased by co-treatment with genistein and irradiation compared with irradiation treatment alone." 
  42. ^ Markovits J, Linassier C, Fossé P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK (1989). "Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II". Cancer Res. 49 (18): 5111–7. PMID 2548712. 
  43. ^ López-Lazaro M, Willmore E, Austin CA. (2007). "Cells lacking DNA topoisomerase II beta are resistant to genistein". J Nat Prod. 70 (5): 763–7. doi:10.1021/np060609z. PMID 17411092. 
  44. ^ Robert Oldham, Robert O. Dillman. (July 2009). Principles of Cancer Biotherapy.. p. 457. ISBN 978-90-481-2277-6. 
  45. ^ Raynal NJ, Charbonneau M, Momparler LF, Momparler RL (2008). "Synergistic effect of 5-Aza-2'-deoxycytidine and genistein in combination against leukemia". Oncol Res 17 (5): 223–30. doi:10.3727/096504008786111356. PMID 18980019. 
  46. ^ Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998). "Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta". Endocrinology 139 (10): 4252–63. doi:10.1210/en.139.10.4252. PMID 9751507. Retrieved 2010-08-23. 
  47. ^ Ju YH, Allred KF, Allred CD, Helferich WG (June 2006). "Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations". Carcinogenesis 27 (6): 1292–9. doi:10.1093/carcin/bgi370. PMID 16537557. "Results from this study suggest that consumption of products containing GEN may not be safe for postmenopausal women with estrogen-dependent breast cancer." 
  48. ^ Chen WF, Wong MS (May 2004). "Genistein enhances insulin-like growth factor signaling pathway in human breast cancer (MCF-7) cells". J. Clin. Endocrinol. Metab. 89 (5): 2351–9. doi:10.1210/jc.2003-032065. PMID 15126563. "These effects could be completely abolished by cotreatment of MCF-7 cells with estrogen antagonist ICI 182780 (1 microM) and tamoxifen (0.1 microM)." 
  49. ^ Yang, X.; Yang, S.; McKimmey, C.; Liu, B.; Edgerton, SM.; Bales, W.; Archer, LT.; Thor, AD. (Apr 2010). "Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation". Carcinogenesis 31 (4): 695–702. doi:10.1093/carcin/bgq007. PMID 20067990. 
  50. ^ Helferich, WG.; Andrade, JE.; Hoagland, MS. (Oct 2008). "Phytoestrogens and breast cancer: a complex story". Inflammopharmacology 16 (5): 219–26. doi:10.1007/s10787-008-8020-0. PMID 18815740. 
  51. ^ Tonetti, DA.; Zhang, Y.; Zhao, H.; Lim, SB.; Constantinou, AI. (2007). "The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D/PKC alpha". Nutr Cancer 58 (2): 222–9. doi:10.1080/01635580701328545. PMID 17640169. 
  52. ^ Jiang, X.; Patterson, NM.; Ling, Y.; Xie, J.; Helferich, WG.; Shapiro, DJ. (Nov 2008). "Low Concentrations of the Soy Phytoestrogen Genistein Induce Proteinase Inhibitor 9 and Block Killing of Breast Cancer Cells by Immune Cells". Endocrinology 149 (11): 5366–73. doi:10.1210/en.2008-0857. PMC 2584580. PMID 18669594. 
  53. ^ Kumi-Diaka J, Rodriguez R, Goudaze G (1998). "Influence of genistein (4',5,7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines". Biol. Cell 90 (4): 349–54. doi:10.1016/S0248-4900(98)80015-4. PMID 9800352. "Genistein-induced apoptosis identifies genistein as a potential diagnostic and therapeutic tool in testicular pathophysiological research." 
  54. ^ Mitchell JH, Cawood E, Kinniburgh D, Provan A, Collins AR, Irvine DS (2001). "Effect of a phytoestrogen food supplement on reproductive health in normal males". Clin Sci (Lond) 100 (6): 613–8. doi:10.1042/CS20000212. PMID 11352776. 
  55. ^ Lutz WK, Tiedge O, Lutz RW, Stopper H (2005). "Different types of combination effects for the induction of micronuclei in mouse lymphoma cells by binary mixtures of the genotoxic agents MMS, MNU, and genistein". Toxicol Sci 86 (2): 318–23. doi:10.1093/toxsci/kfi200. PMID 15901918. 
  56. ^ Bandele OJ, Osheroff N (2007). "Bioflavonoids as poisons of human topoisomerase II alpha and II beta". Biochemistry 46 (20): 6097–108. doi:10.1021/bi7000664. PMC 2893030. PMID 17458941. 
  57. ^ a b Jin, Y.; Wu, H.; Cohen, EM.; Wei, J.; Jin, H.; Prentice, H.; Wu, JY. (Mar 2007). "Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures". J Biomed Sci 14 (2): 275–84. doi:10.1007/s11373-006-9142-2. PMID 17245525. 
  58. ^ Schmidt F, Knobbe CB, Frank B, Wolburg H, Weller M (2008). "The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines". Oncol Rep 19 (4): 1061–6. doi:10.3892/or.19.4.1061. PMID 18357397. 
  59. ^ López-Lazaro M, Willmore E, Austin CA (2007). "Cells lacking DNA topoisomerase II beta are resistant to genistein". J Nat Prod 70 (5): 763–7. doi:10.1021/np060609z. PMID 17411092. 
  60. ^ Barjesteh van Waalwijk van Doorn-Khosrovani S, Janssen J, Maas LM, Godschalk RW, Nijhuis JG, van Schooten FJ (2007). "Dietary flavonoids induce MLL translocations in primary human CD34+ cells". Carcinogenesis 28 (8): 1703–9. doi:10.1093/carcin/bgm102. PMID 17468513. 
  61. ^ Spector LG, Xie Y, Robison LL, Heerema NA, Hilden JM, Lange B et al. (2005). "Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children's oncology group". Cancer Epidemiol Biomarkers Prev 14 (3): 651–5. doi:10.1158/1055-9965.EPI-04-0602. PMID 15767345. 
  62. ^ Azarova AM, Lin RK, Tsai YC, Liu LF, Lin CP, Lyu YL (2010). "Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia". Biochem Biophys Res Commun 399 (1): 66–71. doi:10.1016/j.bbrc.2010.07.043. PMC 3376163. PMID 20638367. 
  63. ^ Piotrowska, E.; Jakóbkiewicz-Banecka, J.; Barańska, S.; Tylki-Szymańska, A.; Czartoryska, B.; Wegrzyn, A.; Wegrzyn, G. (Jul 2006). "Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses". European Journal of Human Genetics 14 (7): 846–52. doi:10.1038/sj.ejhg.5201623. PMID 16670689. 
  64. ^ Ballabio, A. (2009). "Disease pathogenesis explained by basic science: lysosomal storage diseases as autophagocytic disorders". Int J Clin Pharmacol Ther. 47 Suppl 1: S34–8. doi:10.5414/cpp47034. PMID 20040309. 
  65. ^ Settembre, C.; Fraldi, A.; Jahreiss, L.; Spampanato, C.; Venturi, C.; Medina, D.; de Pablo, R.; Tacchetti, C. et al. (Jan 2008). "A block of autophagy in lysosomal storage disorders". Hum Mol Genet 17 (1): 119–29. doi:10.1093/hmg/ddm289. PMID 17913701. 
  66. ^ Bergan at al. (16 Nov 2010). "Isoflavone-genistein derived drug, KBU2046, inhibits prostate tumor metastasis". 
  67. ^ New Drug Stops Spread of Prostate Cancer. Apr 2012
  68. ^ Chen et al. (1999). "Clinical pharmacokinetics of the CD19 receptor-directed tyrosine kinase inhibitor B43-Genistein in patients with B-lineage lymphoid malignancies.". J Clin Pharmacol 39 (12): 1248–55. doi:10.1177/00912709922012051. PMID 10586390. 

External links[edit]