Hypericum perforatum

From Wikipedia, the free encyclopedia
  (Redirected from St John's Wort)
Jump to: navigation, search
"St John's wort" redirects here. For other uses, see St John's wort (disambiguation).
Hypericum perforatum
Saint johns wart flowers.jpg
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Malpighiales
Family: Hypericaceae
Genus: Hypericum
Species: H. perforatum
Binomial name
Hypericum perforatum
L.

Common St John's wort (Hypericum perforatum) is a flowering plant species of the genus Hypericum. It is a medicinal herb with antidepressant properties and potential antibacterial and anti-inflammatory properties. Extracts of St John's wort can be used as a treatment for depression.[1][2] However, it is toxic to livestock when ingested and is considered a weed when growing wild. Hypericum perforatum is indigenous to Europe but has spread worldwide as an invasive species, including to temperate and subtropical regions of Turkey, Ukraine, Russia, the Middle East, India, and China.

Other names for St John's wort include Tipton's weed, rosin rose, goatweed, chase-devil, or Klamath weed.[1] In common speech, the name St John's wort may be used to refer to any species of the genus Hypericum. Therefore, H. perforatum is sometimes called Common St John's wort or Perforate St John's wort in order to differentiate it.

Botanical description[edit]

Translucent dots on the leaves

Hypericum perforatum is a yellow-flowering, stoloniferous or sarmentose, perennial herb indigenous to Europe. It has been introduced to many temperate areas of the world and grows wild in many meadows. The herb's common name comes from its traditional flowering and harvesting on St John's day, 24 June. The genus name Hypericum is derived from the Greek words hyper (above) and eikon (picture), in reference to the plant's traditional use in warding off evil by hanging plants over a religious icon in the house during St John's day. The species name perforatum refers to the presence of small oil glands in the leaves that look like windows, which can be seen when they are held against the light.[1]

St John's wort is a perennial plant with extensive, creeping rhizomes. Its stems are erect, branched in the upper section, and can grow to 1 m high. It has opposing, stalkless, narrow, oblong leaves that are 12 mm long or slightly larger. The leaves are yellow-green in color, with transparent dots throughout the tissue and occasionally with a few black dots on the lower surface.[1] Leaves exhibit obvious translucent dots when held up to the light, giving them a ‘perforated’ appearance, hence the plant's Latin name.

Its flowers measure up to 2.5 cm across, have five petals, and are colored bright yellow with conspicuous black dots. The flowers appear in broad cymes at the ends of the upper branches, between late spring and early to mid summer. The sepals are pointed, with glandular dots in the tissue. There are many stamens, which are united at the base into three bundles. The pollen grains are ellipsoidal.[1]

When flower buds (not the flowers themselves) or seed pods are crushed, a reddish/purple liquid is produced.

Ecology[edit]

St John's wort reproduces both vegetatively and sexually. It thrives in areas with either a winter- or summer-dominant rainfall pattern; however, distribution is restricted by temperatures too low for seed germination or seedling survival. Altitudes greater than 1500 m, rainfall less than 500 mm, and a daily mean January (in Southern hemisphere) temperature greater than 24 degrees C are considered limiting thresholds. Depending on environmental and climatic conditions, and rosette age, St John's wort will alter growth form and habit to promote survival. Summer rains are particularly effective in allowing the plant to grow vegetatively, following defoliation by insects or grazing.

The seeds can persist for decades in the soil seed bank, germinating following disturbance.[3]

Invasive species[edit]

Although Hypericum perforatum is grown commercially in some regions of south east Europe, it is listed as a noxious weed in more than twenty countries and has introduced populations in South and North America, India, New Zealand, Australia, and South Africa.[3] In pastures, St John’s wort acts as both a toxic and invasive weed.[4] It replaces native plant communities and forage vegetation to the dominating extent of making productive land nonviable[citation needed] or becoming an invasive species in natural habitats and ecosystems. Ingestion by livestock can cause photosensitization, central nervous system depression, spontaneous abortion, and can lead to death. Effective herbicides for control of Hypericum include 2,4-D, picloram, and glyphosate. In western North America three beetles Chrysolina quadrigemina, Chrysolina hyperici and Agrilus hyperici have been introduced as biocontrol agents.

Medical uses[edit]

Major depressive disorder[edit]

St John's wort is widely known as a herbal treatment for depression. In some countries, such as Germany, it is commonly prescribed for mild to moderate depression, especially in children and adolescents.[5] Specifically, Germany has a governmental organization called Commission E which regularly performs rigorous studies on herbal medicine. It is proposed that the mechanism of action of St. John's wort is due to the inhibition of reuptake of certain neurotransmitters.[1] The best studied chemical components of the plant are hypericin and pseudohypericin.

An analysis of twenty-nine clinical trials with more than five thousand patients was conducted by Cochrane Collaboration. The review concluded that extracts of St John's wort were superior to placebo in patients with major depression. St John's wort had similar efficacy to standard antidepressants. The rate of side-effects was half that of newer SSRI antidepressants and one-fifth that of older tricyclic antidepressants.[6] A report[6] from the Cochrane Review states:

The available evidence suggests that the Hypericum extracts tested in the included trials a) are superior to placebo in patients with major depression; b) are similarly effective as standard antidepressants; and c) have fewer side-effects than standard antidepressants.

However the report also noted that some of the studies they reviewed may have been flawed or biased, as "results from German-language countries are considerably more favourable for Hypericum than trials from other countries". The authors did not know the reason for this discrepancy.

Other medical uses[edit]

St John's wort is being studied for effectiveness in the treatment of certain somatoform disorders. Results from the initial studies are mixed and still inconclusive; some research has found no effectiveness, other research has found a slight lightening of symptoms. Further study is needed and is being performed.

A major constituent chemical, hyperforin, may be useful for treatment of alcoholism, although dosage, safety and efficacy have not been studied.[7][8] Hyperforin has also displayed antibacterial properties against Gram-positive bacteria, although dosage, safety and efficacy has not been studied.[9] Herbal medicine has also employed lipophilic extracts from St John's wort as a topical remedy for wounds, abrasions, burns, and muscle pain.[8] The positive effects that have been observed are generally attributed to hyperforin due to its possible antibacterial and anti-inflammatory effects.[8] For this reason hyperforin may be useful in the treatment of infected wounds and inflammatory skin diseases.[8] In response to hyperforin's incorporation into a new bath oil, a study to assess potential skin irritation was conducted which found good skin tolerance of St John's wort.[8]

A randomized controlled trial of St John's wort found no significant difference between it and placebo in the management of ADHD symptoms over eight weeks. However, the St John's wort extract used in the study, originally confirmed to contain 0.3% hypericin, was allowed to degrade to levels of 0.13% hypericin and 0.14% hyperforin. Given that the level of hyperforin was not ascertained at the beginning of the study, and levels of both hyperforin and hypericin were well below that used in other studies, little can be determined based on this study alone.[10] Hypericin and pseudohypericin have shown both antiviral and antibacterial activities. It is believed that these molecules bind non-specifically to viral and cellular membranes and can result in photo-oxidation of the pathogens to kill them.[1]

A research team from the Universidad Complutense de Madrid (UCM) published a study entitled "Hypericum perforatum. Possible option against Parkinson's disease", which suggests that St John's wort has antioxidant active ingredients that could help reduce the neuronal degeneration caused by the disease.[11][12][13][14]

Recent evidence suggests that daily treatment with St John's wort may improve the most common physical and behavioural symptoms associated with premenstrual syndrome.[15]

St John's wort was found to be less effective than placebo, in a randomized, double-blind, placebo-controlled trial, for the treatment of irritable bowel syndrome.[16]

St John's wort alleviated age-related long-term memory impairment in rats.[17]

Adverse effects and drug interactions[edit]

St John's wort is generally well tolerated, with an adverse effect profile similar to placebo.[18] The most common adverse effects reported are gastrointestinal symptoms, dizziness, confusion, tiredness and sedation.[19][20] It also decreases the levels of estrogens, such as estradiol, by speeding up its metabolism, and should not be taken by women on contraceptive pills as it upregulates the CYP3A4 cytochrome of the P450 system in the liver.[21]

St John's wort may rarely cause photosensitivity. This can lead to visual sensitivity to light and to sunburns in situations that would not normally cause them.[18] Related to this, recent studies concluded that the extract reacts with light, both visible and ultraviolet, to produce free radicals, molecules that can damage the cells of the body. These can react with vital proteins in the eye that, if damaged, precipitate out, causing cataracts.[22] Another study found that in low concentrations, St. John's wort inhibits free radical production in both cell-free and human vascular tissue, revealing antioxidant properties of the compound. The same study found pro-oxidant activity at the highest concentration tested.[23]

St John's wort is associated with aggravating psychosis in people who have schizophrenia.[24]

Consumption of St. John's wort is discouraged for those with bipolar disorder. There is concern that people with major depression taking St. John’s wort may be at a higher risk for mania.[25]

While St. John's wort shows some promise in treating children, it is advised that it is only done with medical supervision. [25]

Pharmacokinetic interactions[edit]

St John's wort has been shown to cause multiple drug interactions through induction of the cytochrome P450 enzymes CYP3A4 and CYP2C9, and CYP1A2 (females only). This drug-metabolizing enzyme induction results in the increased metabolism of certain drugs, leading to decreased plasma concentration and potential clinical effect.[26] The principal constituents thought to be responsible are hyperforin and amentoflavone.

St John's wort has also been shown to cause drug interactions through the induction of the P-glycoprotein (P-gp) efflux transporter. Increased P-gp expression results in decreased absorption and increased clearance of certain drugs, leading to lower plasma concentration and potential clinical efficacy.[27]

Examples of drugs causing clinically significant interactions with St John's wort
Class Drugs
Antiretrovirals Non-nucleoside reverse transcriptase inhibitors, protease inhibitors
Benzodiazepines Alprazolam, midazolam
Hormonal contraception Combined oral contraceptives
Immunosuppressants Calcineurin inhibitors, cyclosporine, tacrolimus
Antiarrhythmics Amiodarone, flecainide, mexiletine
Beta-blockers Metoprolol, carvedilol
Calcium channel blockers Verapamil, diltiazem, amlodipine
Statins (cholesterol-reducing medications) Lovastatin, simvastatin, atorvastatin
Others Digoxin, methadone, omeprazole, phenobarbital, theophylline, warfarin, levodopa, buprenorphine, irinotecan
Reference: Rossi, 2005; Micromedex

For a complete list, see CYP3A4 ligands and CYP2C9 ligands.

Pharmacodynamic interactions[edit]

In combination with other drugs that may elevate 5-HT (serotonin) levels in the central nervous system (CNS), St John's wort may contribute to serotonin syndrome, a potentially life-threatening adverse drug reaction.[28]

Drugs that may contribute to serotonin syndrome with St John's wort
Class Drugs
Antidepressants MAOIs, TCAs, SSRIs, SNRIs, mirtazapine
Opioids Tramadol, pethidine (meperidine), Levorphanol
CNS stimulants Phentermine, diethylpropion, amphetamines, sibutramine, cocaine
5-HT1 agonists Triptans
Psychedelic drugs Methylenedioxymethamphetamine (MDMA), MDA, 6-APB
Others Selegiline, tryptophan, buspirone, lithium, linezolid, 5-HTP, dextromethorphan
Reference:[28]

Detection in body fluids[edit]

Hypericin, pseudohypericin, and hyperforin may be quantitated in plasma as confirmation of usage and to estimate the dosage. These three active substituents have plasma elimination half-lives within a range of 15–60 hours in humans. None of the three has been detected in urine specimens.[29]

Chemical constituents[edit]

The plant contains the following:[30][31]

The naphthodianthrones hypericin and pseudohypericin along with the phloroglucinol derivative hyperforin are thought to be among the numerous active constituents.[1][32][33][34] It also contains essential oils composed mainly of sesquiterpenes.[1]

Mechanism of action[edit]

St. John's wort (SJW), similarly to other herbal products, contains a whole host of different chemical constituents that may be pertinent to its therapeutic effects.[30] Hyperforin and adhyperforin, two phloroglucinol constituents of SJW, are TRPC6 receptor agonist and, consequently, they induce noncompetitive reuptake inhibition of monoamines (specifically, dopamine, norepinephrine, and serotonin), GABA, and glutamate when they activate this receptor.[2][35][36] It inhibits reuptake of these neurotransmitters by increasing intracellular sodium ion concentrations.[2] Moreover, SJW is known to downregulate the β1 adrenoceptor and upregulate postsynaptic 5-HT1A and 5-HT2A receptors, both of which are a type of serotonin receptor.[2] Other compounds may also play a role in SJW's antidepressant effects such compounds include: oligomeric procyanidines, flavonoids (quercetin), hypericin, and pseudohypericin.[2][37][38][39]

In humans, the active ingredient hyperforin is a monoamine reuptake inhibitor which also acts as an inhibitor of PTGS1, Arachidonate 5-lipoxygenase, SLCO1B1 and an inducer of cMOAT. Hyperforin is also a powerful anti-inflammatory compound with anti-angiogenic, antibiotic, and neurotrophic properties.[35][36][40][41] Hyperforin also has an antagonistic effect on NMDA receptors, a type of glutamate receptor.[40] According to one study, hyperforin content correlates with therapeutic effect in mild to moderate depression.[42] Moreover, a hyperforin-free extract of St John's wort (Remotiv) may still have significant antidepressive effects.[43][44] The limited existing literature on adhyperforin suggests that, like hyperforin, it is a reuptake inhibitor of monoamines, GABA, and glutamate.[45]

Livestock[edit]

Poisoning[edit]

In large doses, St John's wort is poisonous to grazing livestock (cattle, sheep, goats, horses).[4] Behavioural signs of poisoning are general restlessness and skin irritation. Restlessness is often indicated by pawing of the ground, headshaking, head rubbing, and occasional hindlimb weakness with knuckling over, panting, confusion, and depression. Mania and hyperactivity may also result, including running in circles until exhausted. Observations of thick wort infestations by Australian graziers include the appearance of circular patches giving hillsides a ‘crop circle’ appearance, it is presumed, from this phenomenon. Animals typically seek shade and have reduced appetite. Hypersensitivity to water has been noted, and convulsions may occur following a knock to the head. Although general aversion to water is noted, some may seek water for relief.

Severe skin irritation is physically apparent, with reddening of non-pigmented and unprotected areas. This subsequently leads to itch and rubbing, followed by further inflammation, exudation, and scab formation. Lesions and inflammation that occur are said to resemble the conditions seen in foot and mouth disease. Sheep have been observed to have face swelling, dermatitis, and wool falling off due to rubbing. Lactating animals may cease or have reduced milk production; pregnant animals may abort. Lesions on udders are often apparent. Horses may show signs of anorexia, depression (with a comatose state), dilated pupils, and injected conjunctiva.

Diagnosis[edit]

Increased respiration and heart rate is typically observed while one of the early signs of St John's wort poisoning is an abnormal increase in body temperature. Affected animals will lose weight, or fail to gain weight; young animals are more affected than old animals. In severe cases death may occur, as a direct result of starvation, or because of secondary disease or septicaemia of lesions. Some affected animals may accidentally drown. Poor performance of suckling lambs (pigmented and non-pigmented) has been noted, suggesting a reduction in the milk production, or the transmission of a toxin in the milk.

Photosensitisation[edit]

Most clinical signs in animals are caused by photosensitisation.[94] Plants may induce either primary or secondary photosensitisation:

  • primary photosensitisation directly from chemicals contained in ingested plants
  • secondary photosensitisation from plant-associated damage to the liver.

Araya and Ford (1981) explored changes in liver function and concluded there was no evidence of Hypericum-related effect on the excretory capacity of the liver, or any interference was minimal and temporary. However, evidence of liver damage in blood plasma has been found at high and long rates of dosage.

Photosensitisation causes skin inflammation by a mechanism involving a pigment or photodynamic compound, which when activated by a certain wavelength of light leads to oxidation reactions in vivo. This leads to lesions of tissue, particularly noticeable on and around parts of skin exposed to light. Lightly covered or poorly pigmented areas are most conspicuous. Removal of affected animals from sunlight results in reduced symptoms of poisoning.

See also[edit]

References[edit]

  1. ^ a b c d e f g h i Mehta, Sweety (2012-12-18). "Pharmacognosy of St. John's Wort". Pharmaxchange.info. Retrieved 2014-02-16. 
  2. ^ a b c d e Nathan, PJ (March 2001). "Hypericum perforatum (St John's Wort): a non-selective reuptake inhibitor? A review of the recent advances in its pharmacology". Journal of psychopharmacology (Oxford, England) 15 (1): 47–54. doi:10.1177/026988110101500109. PMID 11277608. 
  3. ^ a b "SPECIES: Hypericum perforatum". Fire Effects Information System. 
  4. ^ a b St John's wort
  5. ^ Fegert, JM; Kölch, M; Zito, JM; Glaeske, G; Janhsen, K (February–April 2006). "Antidepressant use in children and adolescents in Germany". Journal of Child and Adolescent Psychopharmacology 16 (1–2): 197–206. doi:10.1089/cap.2006.16.197. PMID 16553540. 
  6. ^ a b Linde, K; Berner, MM; Kriston, L (2008). Linde, Klaus, ed. "St John's wort for major depression". Cochrane Database of Systematic Reviews (4): CD000448. doi:10.1002/14651858.CD000448.pub3. PMID 18843608. 
  7. ^ Kumar, V; Mdzinarishvili, A; Kiewert, C; Abbruscato, T; Bickel, U; van der Schyf, CJ; Klein, J (September 2006). "NMDA receptor-antagonistic properties of hyperforin, a constituent of St. John's Wort" (PDF). Journal of Pharmacological Sciences 102 (1): 47–54. doi:10.1254/jphs.FP0060378. PMID 16936454. 
  8. ^ a b c d e Reutera, J; Huykea, C; Scheuvensa, H; Plochc, M; Neumannd, K; Jakobb, T; Schemppa, CM (2008). "Skin tolerance of a new bath oil containing St. John's wort extract". Skin pharmacology and physiology 21 (6): 306–311. doi:10.1159/000148223. PMID 18667843. 
  9. ^ Cecchini, C; Cresci, A; Coman, MM; Ricciutelli, M; Sagratini, G; Vittori, S; Lucarini, D; Maggi, F (June 2007). "Antimicrobial activity of seven hypericum entities from central Italy". Planta Medica 73 (6): 564–6. doi:10.1055/s-2007-967198. PMID 17516331. 
  10. ^ Weber, W; Vander Stoep, A; McCarty, RL; Weiss, NS; Biederman, J; McClellan, J (June 2008). "A Randomized Placebo Controlled Trial Of Hypericum perforatum For Attention Deficit Hyperactivity Disorder In Children And Adolescents". JAMA 299 (22): 2633–41. doi:10.1001/jama.299.22.2633. PMC 2587403. PMID 18544723. 
  11. ^ "Medicinal Plant, St John's Wort, May Reduce Neuronal Degeneration Caused By Parkinson's Disease". ScienceDaily. Retrieved 2014-02-16. 
  12. ^ "www.diariocritico.com/general/147916". Diariocritico.com. Retrieved 2014-02-16. 
  13. ^ [1][dead link]
  14. ^ "www.madrimasd.org/noticias/-i-Hypericum-perforatum-i-y-Parkinson/38181". Madrimasd.org. 2009-02-16. Retrieved 2014-02-16. 
  15. ^ Canning, S; Waterman, M; Orsi, N; Ayres, J; Simpson, N; Dye, L (March 2010). "The efficacy of Hypericum perforatum (St John's wort) for the treatment of premenstrual syndrome: a randomized, double-blind, placebo-controlled trial". CNS Drugs 24 (3): 207–25. doi:10.2165/11530120-000000000-00000. PMID 20155996. 
  16. ^ Saito, YA; Rey, E; Almazar-Elder, AE; Harmsen, WS; Zinsmeister, AR; Locke, GR; Talley, NJ (January 2010). "A randomized, double-blind, placebo-controlled trial of St John's wort for treating irritable bowel syndrome". Am. J. Gastroenterol. 105 (1): 170–7. doi:10.1038/ajg.2009.577. PMID 19809408. 
  17. ^ Trofimiuk, E; Braszko, JJ (August 2010). "Hypericum perforatum alleviates age-related forgetting in rats". Current Topics in Nutraceutical Research 8 (2-3): 103–107. 
  18. ^ a b Ernst, E; Rand, JI; Barnes, J; Stevinson, C (1998). "Adverse effects profile of the herbal antidepressant St. John's wort (Hypericum perforatum L.)". European Journal of Clinical Pharmacology 54 (8): 589–94. doi:10.1007/s002280050519. PMID 9860144. 
  19. ^ Barnes, J; Anderson, LA; Phillipson, JD (2002). Herbal Medicines: A guide for healthcare professionals (2nd ed.). London, UK: Pharmaceutical Press. ISBN 9780853692898. 
  20. ^ Parker, V; Wong, AH; Boon, HS; Seeman, MV (February 2001). "Adverse reactions to St John's Wort". Canadian Journal of Psychiatry 46 (1): 77–9. PMID 11221494. 
  21. ^ Barr Laboratories, Inc. (March 2008). "ESTRACE TABLETS, (estradiol tablets, USP)" (PDF). wcrx.com. Retrieved 27 January 2010. 
  22. ^ Schey, KL; Patat, S; Chignell, CF; Datillo, M; Wang, RH; Roberts, JE (August 2000). "Photooxidation of lens alpha-crystallin by hypericin (active ingredient in St. John's Wort)". Photochemistry and Photobiology 72 (2): 200–3. doi:10.1562/0031-8655(2000)0720200POLCBH2.0.CO2. PMID 10946573. 
  23. ^ Hunt, EJ; Lester, CE; Lester, EA; Tackett, RL (June 2001). "Effect of St. John's wort on free radical production". Life Sci. 69 (2): 181–90. doi:10.1016/S0024-3205(01)01102-X. PMID 11441908. 
  24. ^ Singh, Simon and Edzard Ernst (2008). Trick or Treatment: The Undeniable Facts About Alternative Medicine. W. W. Norton & Company. p. 218. ISBN 978-0-393-33778-5. 
  25. ^ a b "St. John's wort - University of Maryland Medical Center". University of Maryland Medical Center. umm.edu. June 24, 2013. Retrieved January 3, 2014. 
  26. ^ Wenk, M; Todesco, L; Krähenbühl, S (April 2004). "Effect of St John's wort on the activities of CYP1A2, CYP3A4, CYP2D6, N-acetyltransferase 2, and xanthine oxidase in healthy males and females" (PDF). British Journal of Clinical Pharmacology 57 (4): 495–499. doi:10.1111/j.1365-2125.2003.02049.x. PMC 1884478. PMID 15025748. 
  27. ^ Gurley, BJ; Swain, A; Williams, DK; Barone, G; Battu, SK (July 2008). "Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: Comparative effects of St. John's wort, echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics". Mol Nutr Food Res 52 (7): 772–9. doi:10.1002/mnfr.200700081. PMC 2562898. PMID 18214850. 
  28. ^ a b Rossi, S, ed. (2013). Australian Medicines Handbook (2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust. ISBN 978-0-9805790-9-3.  edit
  29. ^ R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 8th edition, Biomedical Publications, Foster City, CA, 2008, pp. 1445–1446.
  30. ^ a b c d Barnes, J; Anderson, LA; Phillipson, JD (2007) [1996]. Herbal Medicines (PDF) (3rd ed.). London, UK: Pharmaceutical Press. ISBN 978-0-85369-623-0.  edit
  31. ^ a b Greeson, JM; Sanford, B; Monti, DA. "St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature" (PDF). Psychopharmacology (Berl) 153 (4): 402–414date=February 2001. doi:10.1007/s002130000625. PMID 11243487. 
  32. ^ Umek, A; Kreft, S; Kartnig, T; Heydel, B (1999). "Quantitative phytochemical analyses of six hypericum species growing in slovenia". Planta medica 65 (4): 388–90. doi:10.1055/s-2006-960798. PMID 17260265. 
  33. ^ Tatsis, EC; Boeren, S; Exarchou, V; Troganis, AN; Vervoort, J; Gerothanassis, IP (2007). "Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS". Phytochemistry 68 (3): 383–93. doi:10.1016/j.phytochem.2006.11.026. PMID 17196625. 
  34. ^ Schwob I, Bessière JM, Viano J.Composition of the essential oils of Hypericum perforatum L. from southeastern France.C R Biol. 2002;325:781-5.
  35. ^ a b "Pharmacology". "Hyperforin". Drugbank. University of Alberta. Retrieved 5 December 2013. 
  36. ^ a b "Biomedical Effects and Toxicity". "Hyperforin". Pubchem Compound. National Center for Biotechnology Information. Retrieved 5 December 2013. 
  37. ^ Nahrstedt, A; Butterweck, V (September 1997). "Biologically active and other chemical constituents of the herb of Hypericum perforatum L". Pharmacopsychiatry 30 (Suppl 2): 129–34. doi:10.1055/s-2007-979533. PMID 9342774. 
  38. ^ Butterweck, V (2003). "Mechanism of action of St John's wort in depression : what is known?". CNS Drugs 17 (8): 539–62. doi:10.2165/00023210-200317080-00001. PMID 12775192. 
  39. ^ Müller, WE (February 2003). "Current St John's wort research from mode of action to clinical efficacy". Pharmacology Research 47 (2): 101–9. doi:10.1016/S1043-6618(02)00266-9. PMID 12543057. 
  40. ^ a b "Pharmacology and Biomolecular Interactions and Pathways". "Hyperforin". PubChem Compound. National Center for Biotechnology Information. Retrieved 3 December 2013. 
  41. ^ "Targets". "Hyperforin". DrugBank. University of Alberta. Retrieved 4 December 2013. 
  42. ^ USA (2014-01-24). "St. John's wort in mild to moderate depre... [Pharmacopsychiatry. 1998] - PubMed - NCBI". Ncbi.nlm.nih.gov. Retrieved 2014-02-16. 
  43. ^ Woelk, H (September 2000). "Comparison of St John's wort and imipramine for treating depression: randomised controlled trial". BMJ 321 (7260): 536–9. doi:10.1136/bmj.321.7260.536. PMC 27467. PMID 10968813. 
  44. ^ Schrader, E (March 2000). "Equivalence of St John's wort extract (Ze 117) and fluoxetine: a randomized, controlled study in mild-moderate depression". Int Clin Psychopharmacol 15 (2): 61–8. doi:10.1097/00004850-200015020-00001. PMID 10759336. 
  45. ^ Jensen, AG; Hansen, SH; Nielsen, EO (Feb 23, 2001). "Adhyperforin as a contributor to the effect of Hypericum perforatum L. in biochemical models of antidepressant activity.". Life Sciences 68 (14): 1593–605. doi:10.1016/S0024-3205(01)00946-8. PMID 11263672. 
  46. ^ "St. John's wort". Natural Standard. Cambridge, MA. Retrieved 13 December 2013. 
  47. ^ a b c d e f Anzenbacher, Pavel; Zanger, Ulrich M., eds. (2012). Metabolism of Drugs and Other Xenobiotics. Weinheim, Germany: Wiley-VCH. doi:10.1002/9783527630905. ISBN 978-3-527-63090-5.  edit
  48. ^ Jensen, AG; Hansen, SH; Nielsen, EO (February 2001). "Adhyperforin as a contributor to the effect of Hypericum perforatum L. in biochemical models of antidepressant activity.". Life Sciences 68 (14): 1593–1605. doi:10.1016/S0024-3205(01)00946-8. PMID 11263672. 
  49. ^ a b Krusekopf, S; Roots, I (November 2005). "St. John's wort and its constituent hyperforin concordantly regulate expression of genes encoding enzymes involved in basic cellular pathways". Pharmacogenetics and Genomics 15 (11): 817–829. doi:10.1097/01.fpc.0000175597.60066.3d. PMID 16220113. 
  50. ^ a b c Obach, RS (July 2000). "Inhibition of human cytochrome P450 enzymes by constituents of St. John's Wort, an herbal preparation used in the treatment of depression" (PDF). Journal of Pharmacology and Experimental Therapeutics 294 (1): 88–95. PMID 10871299. 
  51. ^ a b c d Kubin, A; Wierrani, F; Burner, U; Alth, G; Grünberger, W (2005). "Hypericin - The Facts About a Controversial Agent" (PDF). Current Pharmaceutical Design 11 (2): 233–253. doi:10.2174/1381612053382287. PMID 15638760. 
  52. ^ Peebles, KA; Baker, RK; Kurz, EU; Schneider, BJ; Kroll, DJ. "Catalytic inhibition of human DNA topoisomerase IIalpha by hypericin, a naphthodianthrone from St. John's wort (Hypericum perforatum)". Biochemical Pharmacology 62 (8): 1059–1070. doi:10.1016/S0006-2952(01)00759-6. PMID 11597574. 
  53. ^ Kerb, R; Brockmöller, J; Staffeldt, B; Ploch, M; Roots, I (September 1996). "Single-dose and steady-state pharmacokinetics of hypericin and pseudohypericin" (PDF). Antimicrobial Agents and Chemotherapy 40 (9): 2087–2093. PMC 163478. PMID 8878586. 
  54. ^ Meruelo, D; Lavie, G; Lavie, D (July 1988). "Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: Aromatic polycyclic diones hypericin and pseudohypericin" (PDF). Proceedings of the National Academy of Sciences 85 (14): 5230–5234. doi:10.1073/pnas.85.14.5230. PMC 281723. PMID 2839837. 
  55. ^ Lavie, G; Valentine, F; Levin, B; Mazur, Y; Gallo, G; Lavie, D; Weiner, D; Meruelo, D (August 1989). "Studies of the mechanisms of action of the antiretroviral agents hypericin and pseudohypericin" (PDF). Proceedings of the National Academy of Sciences 86 (15): 5963–5967. doi:10.1073/pnas.86.15.5963. PMC 297751. PMID 2548193. 
  56. ^ Takahashi, I; Nakanishi, S; Kobayashi, E; Nakano, H; Suzuki, K; Tamaoki, T. "Hypericin and pseudohypericin specifically inhibit protein kinase C: Possible relation to their antiretroviral activity". Biochemical and Biophysical Research Communications 165 (3): December 1989. doi:10.1016/0006-291X(89)92730-7. PMID 2558652. 
  57. ^ von Moltke, LL; Weemhoff, JL; Bedir, E; Khan, IA; Harmatz, JS; Goldman, P; Greenblatt, DJ (August 2004). "Inhibition of human cytochromes P450 by components of Ginkgo biloba". The Journal of Pharmacy and Pharmacology 56 (8): 1039–1044. doi:10.1211/0022357044021. PMID 15285849. 
  58. ^ Lee, JS; Lee, MS; Oh, WK; Sul, JY (August 2009). "Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells" (PDF). Biological & Pharmaceutical Bulletin 32 (8): 1427–1432. doi:10.1248/bpb.32.1427. PMID 19652385. 
  59. ^ Wilsky, S; Sobotta, K; Wiesener, N; Pilas, J; Althof, N; Munder, T; Wutzler, P; Henke, A (February 2012). "Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication". Archives of Virology 157 (2): 259–269. doi:10.1007/s00705-011-1164-z. PMID 22075919. 
  60. ^ Lee, JS; Sul, JY; Park, JB; Lee, MS; Cha, EY; Song, IS; Kim, JR; Chang, ES (May 2013). "Fatty Acid Synthase Inhibition by Amentoflavone Suppresses HER2/neu(erbB2) Oncogene in SKBR3 Human Breast Cancer Cells". Phytotherapy Research 27 (5): 713–720. doi:10.1002/ptr.4778. PMID 22767439. 
  61. ^ Katavic, PL; Lamb, K; Navarro, H; Prisinzano, TE (August 2007). "Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships". J Nat Prod. 70 (8): 1278–82. doi:10.1021/np070194x. PMC 2265593. PMID 17685652. 
  62. ^ Hanrahan, JR; Chebib, M; Davucheron, NL; Hall, BJ; Johnston, GA (2003). "Semisynthetic preparation of amentoflavone: A negative modulator at GABA(A) receptors". Bioorganic & Medicinal Chemistry Letters 13 (14): 2281–4. doi:10.1016/s0960-894x(03)00434-7. PMID 12824018. 
  63. ^ Viola, H; Wasowski, C; Levi de Stein, M; Wolfman, C; Silveira, R; Dajas, F; Medina, JH; Paladini, AC (June 1995). "Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects". Planta Medica 61 (3): 213–216. doi:10.1055/s-2006-958058. PMID 7617761. 
  64. ^ Bao, YY; Zhou, SH; Fan, J; Wang, QY (September 2013). "Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers". Future Oncology 9 (9): 1353–1364. doi:10.2217/fon.13.84. PMID 23980682. 
  65. ^ Shukla, S; Gupta, S. "Apigenin: A promising molecule for cancer prevention". Pharmaceutical Research 27 (6): 962–968. doi:10.1002/mnfr.201200424. PMID 23197449. 
  66. ^ Crespy, V; Williamson, G. "A Review of the Health Effects of Green Tea Catechins in In Vivo Animal Models" (PDF). The Journal of Nutrition 134 (12): 3431S–3440S. 
  67. ^ Chacko, SM; Thambi, PT; Kuttan, R; Nishigaki, I (April 2010). "Beneficial effects of green tea: A literature review" (PDF). Chinese Medicine 5 (1): 1–9. doi:10.1186/1749-8546-5-13. PMC 2855614. PMID 20370896. 
  68. ^ a b Korte, G; Dreiseitel, A; Schreier, P; Oehme, A; Locher, S; Geiger, S; Heilmann, J; Sand, PG (January 2010). "Tea catechins' affinity for human cannabinoid receptors". Phytomedicine 17 (1): 19–22. doi:10.1016/j.phymed.2009.10.001. PMID 19897346. 
  69. ^ Song, M; Hong, M; Lee, MY; Jee, JG; Lee, YM; Bae, JS; Jeong, TC; Lee, S (September 2013). "Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6". Food and Chemical Toxicology 59: 549–553. doi:10.1016/j.fct.2013.06.055. PMID 23835282. 
  70. ^ Li, S; Zhang, Z; Cain, A; Wang, B; Long, M; Taylor, J (January 2005). "Antifungal Activity of Camptothecin, Trifolin, and Hyperoside Isolated from Camptotheca acuminata". Journal of Agricultural and Food Chemistry 53 (1): 32–37. doi:10.1021/jf0484780. PMID 15631505. 
  71. ^ Zeng, KW; Wang, XM; Ko, H; Kwon, HC; Cha, JW; Yang, HO (December 2011). "Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway". European Journal of Pharmacology 672 (1-3): 45–55. doi:10.1016/j.ejphar.2011.09.177. PMID 21978835. 
  72. ^ Kim, SJ; Um, JY; Lee, JY (January 2011). "Anti-Inflammatory Activity of Hyperoside Through the Suppression of Nuclear Factor-κB Activation in Mouse Peritoneal Macrophages". The American Journal of Chinese Medicine 39 (1): 171–181. doi:10.1142/S0192415X11008737. PMID 21213407. 
  73. ^ Haas, JS; Stolz, ED; Betti, AH; Stein, AC; Schripsema, J; Poser, GL; Rates, SM (March 2011). "The Anti-Immobility Effect of Hyperoside on the Forced Swimming Test in Rats is Mediated by the D2-Like Receptors Activation" (PDF). Planta Medica 77 (4): 334–339. doi:10.1055/s-0030-1250386. PMID 20945276. 
  74. ^ Zheng, M; Liu, C; Pan, F; Shi, D; Zhang, Y (January 2012). "Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: Possible cellular mechanisms". Phytomedicine 19 (2): 145–149. doi:10.1016/j.phymed.2011.06.029. PMID 21802268. 
  75. ^ Pal, D; Mitra, AK (March 2006). "MDR- and CYP3A4-mediated drug-herbal interactions". Life Sciences 78 (18): 2131–2145. doi:10.1016/j.lfs.2005.12.010. PMID 16442130. 
  76. ^ Hämäläinen, M; Nieminen, R; Vuorela, P; Heinonen, M; Moilanen, E (August 2007). "Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages" (PDF). Mediators of Inflammation 2007: 45673. doi:10.1155/2007/45673. PMC 2220047. PMID 18274639. 
  77. ^ Berger, A; Venturelli, S; Kallnischkies, M; Böcker, A; Busch, C; Weiland, T; Noor, S; Leischner, C; Weiss, TS; Lauer, UM; Bischoff, SC; Bitzer, M (June 2013). "Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases". The Journal of Nutritional Biochemistry 24 (6): 977–985. doi:10.1016/j.jnutbio.2012.07.001. PMID 23159065. 
  78. ^ a b Calderón-Montaño, JM; Burgos-Morón, E; Pérez-Guerrero, C; López-Lázaro, M (April 2011). "A Review on the Dietary Flavonoid Kaempferol". Mini-Reviews in Medicinal Chemistry 11 (4): 298–344. doi:10.2174/138955711795305335. PMID 21428901. 
  79. ^ Seelinger, G; Merfort, I; Schempp, CM (November 2008). "Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin". Planta Medica 74 (14): 1667–1677. doi:10.1055/s-0028-1088314. PMID 18937165. 
  80. ^ Lin, Y; Shi, R; Wang, X; Shen, HM. "Luteolin, a flavonoid with potential for cancer prevention and therapy" (PDF). Current Cancer Drug Targets 8 (7): 634–646. doi:10.2174/156800908786241050. PMC 2615542. PMID 18991571. 
  81. ^ Theoharides, TC; Asadi, S; Panagiotidou, S (April–June 2012). "A case series of a luteolin formulation (neuroprotek®) in children with autism spectrum disorders". International Journal of Immunopathology and Pharmacology 25 (2): 317–323. PMID 22697063. 
  82. ^ Yu, MC; Chen, JH; Lai, CY; Han, CY; Ko, WC (February 2010). "Luteolin, a non-selective competitive inhibitor of phosphodiesterases 1-5, displaced [3H]-rolipram from high-affinity rolipram binding sites and reversed xylazine/ketamine-induced anesthesia". European Journal of Pharmacology 627 (1-3): 269–275. doi:10.1016/j.ejphar.2009.10.031. PMID 19853596. 
  83. ^ Chen, C; Zhou, J; Ji, C (September 2010). "Quercetin: A potential drug to reverse multidrug resistance". Life Sciences 87 (11-12): 333–338. doi:10.1016/j.lfs.2010.07.004. PMID 20637779. 
  84. ^ a b Kelly, GS (June 2011). "Quercetin" (PDF). Alternative Medicine Review 16 (2): 172–194. ISSN 1089-5159. 
  85. ^ Ko, WC; Shih, CM; Lai, YH; Chen, JH; Huang, HL (November 2004). "Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure–activity relationships". Biochemical Pharmacology 68 (10): 2087–2094. doi:10.1016/j.bcp.2004.06.030. PMID 15476679. 
  86. ^ Chua, LS (December 2013). "A review on plant-based rutin extraction methods and its pharmacological activities". Journal of Ethnopharmacology 150 (3): 805–817. doi:10.1016/j.jep.2013.10.036. PMID 24184193. 
  87. ^ Jaikang, C; Niwatananun, K; Narongchai, P; Narongchai, S; Chaiyasut, C (August 2011). "Inhibitory effect of caffeic acid and its derivatives on human liver cytochrome P450 3A4 activity". Journal of Medicinal Plants Research 5 (15): 3530–3536. 
  88. ^ Hou, J; Fu, J; Zhang, ZM; Zhu, HL. "Biological activities and chemical modifications of caffeic acid derivatives". Fudan University Journal of Medical Sciences 38 (6): 546–552. doi:10.3969/j.issn.1672-8467.2011.06.017. 
  89. ^ Zhao, Y; Wang, J; Ballevre, O; Luo, H; Zhang, W (April 2012). "Antihypertensive effects and mechanisms of chlorogenic acids". Hypertension Research 35 (4): 370–374. doi:10.1038/hr.2011.195. PMID 22072103. 
  90. ^ [2][dead link]
  91. ^ http://www.acdlabs.com/resources/freeware/chemsketch/ACDChemSketch
  92. ^ Lee, MJ; Maliakal, P; Chen, L; Meng, X; Bondoc, FY; Prabhu, S; Lambert, G; Mohr, S; Yang, CS (October 2002). "Pharmacokinetics of Tea Catechins after Ingestion of Green Tea and (-)-Epigallocatechin-3-gallate by Humans: Formation of Different Metabolites and Individual Variability" (PDF). Cancer Epidemiology, Biomarkers & Prevention 11 (10 pt 1): 1025–1032. PMID 12376503. 
  93. ^ Walle, T; Walle, UK; Halushka, PV (October 2001). "Carbon Dioxide Is the Major Metabolite of Quercetin in Humans" (PDF). The Journal of Nutrition 131 (10): 2648–2652. PMID 11584085. 
  94. ^ St John's wort effects on animals

Further reading[edit]

External links[edit]