# 3000 (number)

 ← 2999 3000 3001 →
Cardinalthree thousand
Ordinal3000th
(three thousandth)
Factorization23 × 3 × 53
Greek numeral,Γ´
Roman numeralMMM
Unicode symbol(s)MMM, mmm
Binary1011101110002
Ternary110100103
Senary215206
Octal56708
Duodecimal18A012
ArmenianՎ
Egyptian hieroglyph𓆾

3000 (three thousand) is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English (when "and" is required from 101 forward).

## Selected numbers in the range 3001–3999

### 3200 to 3299

• 3203 – safe prime
• 3207 – number of compositions of 14 whose run-lengths are either weakly increasing or weakly decreasing[16]
• 3229super-prime
• 3240triangular number
• 3248 – member of a Ruth-Aaron pair with 3249 under second definition, largest number whose factorial is less than 1010000 – hence its factorial is the largest certain advanced computer programs can handle.
• 3249 = 572, palindromic in base 7 (123217), centered octagonal number,[1] member of a Ruth–Aaron pair with 3248 under second definition
• 3253 – sum of eleven consecutive primes (269 + 271 + 277 + 281 + 283 + 293 + 307 + 311 + 313 + 317 + 331)
• 3256 – centered heptagonal number[3]
• 3259super-prime, completes the ninth prime quadruplet set
• 3264 – solution to Steiner's conic problem: number of smooth conics tangent to 5 given conics in general position[17]
• 3266 – sum of first 41 primes, 523rd sphenic number
• 3276tetrahedral number[18]
• 3277 – 5th super-Poulet number,[19] decagonal number[4]
• 3281octahedral number,[20] centered square number[9]
• 3286 – nonagonal number[7]
• 3299 – 85th Sophie Germain prime, super-prime

### Prime numbers

There are 120 prime numbers between 3000 and 4000:[33][34]

3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989

## References

1. Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
2. ^ Sloane, N. J. A. (ed.). "Sequence A051624 (12-gonal (or dodecagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
3. Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
4. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
5. ^ a b Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
6. ^ Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
7. Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
8. ^ a b Sloane, N. J. A. (ed.). "Sequence A002411 (Pentagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
9. Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
10. ^ Sloane, N. J. A. (ed.). "Sequence A000073 (Tribonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
11. ^ a b c Sloane, N. J. A. (ed.). "Sequence A080076 (Proth primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
12. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
13. Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
14. ^ Sloane, N. J. A. (ed.). "Sequence A000055 (Number of trees with n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
15. ^ a b Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
16. ^
17. ^ Bashelor, Andrew; Ksir, Amy; Traves, Will (2008), "Enumerative algebraic geometry of conics." (PDF), Amer. Math. Monthly, 115 (8): 701–728, doi:10.1080/00029890.2008.11920584, JSTOR 27642583, MR 2456094, S2CID 16822027
18. ^ a b Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
19. ^ Sloane, N. J. A. (ed.). "Sequence A050217 (Super-Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
20. ^ a b Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
21. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
22. ^ Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
23. ^ a b Sloane, N. J. A. (ed.). "Sequence A002648 (A variant of the cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
24. ^ Sloane, N. J. A. (ed.). "Sequence A007053 (Number of primes <= 2^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
25. ^ Sloane, N. J. A. (ed.). "Sequence A000032 (Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
26. ^ Sloane, N. J. A. (ed.). "Sequence A082079 (Balanced primes of order four)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
27. ^
28. ^
29. ^
30. ^
31. ^ Sloane, N. J. A. (ed.). "Sequence A247838 (Numbers n such that sigma(sigma(n)) is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
32. ^ Lamb, Evelyn (October 25, 2019), "Farewell to the Fractional Foot", Roots of Unity, Scientific American
33. ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
34. ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.