MAP3K7

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
MAP3K7
Protein MAP3K7 PDB 2eva.png
Available structures
PDBHuman UniProt search: PDBe RCSB
Identifiers
AliasesMAP3K7, MEKK7, TAK1, TGF1a, mitogen-activated protein kinase kinase kinase 7, FMD2, CSCF
External IDsOMIM: 602614 HomoloGene: 135715 GeneCards: MAP3K7
Gene location (Human)
Chromosome 6 (human)
Chr.Chromosome 6 (human)[1]
Chromosome 6 (human)
Genomic location for MAP3K7
Genomic location for MAP3K7
Band6q15Start90,513,573 bp[1]
End90,587,072 bp[1]
RNA expression pattern
PBB GE MAP3K7 206854 s at fs.png

PBB GE MAP3K7 206853 s at fs.png

PBB GE MAP3K7 211536 x at fs.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003188
NM_145331
NM_145332
NM_145333

n/a

RefSeq (protein)

NP_003179
NP_663304
NP_663305
NP_663306

n/a

Location (UCSC)Chr 6: 90.51 – 90.59 Mbn/a
PubMed search[2]n/a
Wikidata
View/Edit Human

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), also known as TAK1, is an enzyme that in humans is encoded by the MAP3K7 gene.[3]

Function[edit]

The protein encoded by this gene is a member of the serine/threonine protein kinase family. This kinase mediates the signaling transduction induced by TGF beta and morphogenetic protein (BMP), and controls a variety of cell functions including transcription regulation and apoptosis. TAK1 is a central regulator of cell death and is activated through a diverse set of intra- and extracellular stimuli. TAK1 regulates cell survival not solely through NF-κB but also through NF-κB-independent pathways such as oxidative stress and receptor-interacting protein kinase 1 (RIPK1) kinase activity-dependent pathway.[4] In response to IL-1, this protein forms a kinase complex including TRAF6, MAP3K7P1/TAB1 and MAP3K7P2/TAB2; this complex is required for the activation of nuclear factor kappa B. This kinase can also activate MAPK8/JNK, MAP2K4/MKK4, and thus plays a role in the cell response to environmental stresses. Four alternatively spliced transcript variants encoding distinct isoforms have been reported.[5]

Interactions[edit]

MAP3K7 has been shown to interact with:

References[edit]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000135341 - Ensembl, May 2017
  2. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. ^ Kondo M, Osada H, Uchida K, Yanagisawa K, Masuda A, Takagi K, Takahashi T, Takahashi T (February 1998). "Molecular cloning of human TAK1 and its mutational analysis in human lung cancer". Int J Cancer. 75 (4): 559–563. doi:10.1002/(SICI)1097-0215(19980209)75:4<559::AID-IJC11>3.0.CO;2-4. PMID 9466656.
  4. ^ Mihaly, S. R.; Ninomiya-Tsuji, J.; Morioka, S. (2014-11-01). "TAK1 control of cell death". Cell Death & Differentiation. 21 (11): 1667–1676. doi:10.1038/cdd.2014.123. ISSN 1350-9047. PMC 4211365. PMID 25146924.
  5. ^ "Entrez Gene: MAP3K7 mitogen-activated protein kinase kinase kinase 7".
  6. ^ a b Mochida Y, Takeda K, Saitoh M, Nishitoh H, Amagasa T, Ninomiya-Tsuji J, Matsumoto K, Ichijo H (October 2000). "ASK1 inhibits interleukin-1-induced NF-kappa B activity through disruption of TRAF6-TAK1 interaction". J. Biol. Chem. 275 (42): 32747–32752. doi:10.1074/jbc.M003042200. PMID 10921914.
  7. ^ a b c d Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (March 1999). "The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway". Nature. 398 (6724): 252–256. doi:10.1038/18465. PMID 10094049.
  8. ^ Sakurai H, Miyoshi H, Toriumi W, Sugita T (April 1999). "Functional interactions of transforming growth factor beta-activated kinase 1 with IkappaB kinases to stimulate NF-kappaB activation". J. Biol. Chem. 274 (15): 10641–10648. doi:10.1074/jbc.274.15.10641. PMID 10187861.
  9. ^ a b Sakurai H, Miyoshi H, Mizukami J, Sugita T (June 2000). "Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1". FEBS Lett. 474 (2–3): 141–145. doi:10.1016/s0014-5793(00)01588-x. PMID 10838074.
  10. ^ a b c Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K (December 2003). "Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling". EMBO J. 22 (23): 6277–6288. doi:10.1093/emboj/cdg605. PMC 291846. PMID 14633987.
  11. ^ Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (July 2001). "TAK1 is a ubiquitin-dependent kinase of MKK and IKK". Nature. 412 (6844): 346–351. doi:10.1038/35085597. PMID 11460167.
  12. ^ a b c Cheung PC, Nebreda AR, Cohen P (February 2004). "TAB3, a new binding partner of the protein kinase TAK1". Biochem. J. 378 (Pt 1): 27–34. doi:10.1042/BJ20031794. PMC 1223947. PMID 14670075.
  13. ^ Channavajhala PL, Wu L, Cuozzo JW, Hall JP, Liu W, Lin LL, Zhang Y (November 2003). "Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling". J. Biol. Chem. 278 (47): 47089–47097. doi:10.1074/jbc.M306002200. PMID 12975377.
  14. ^ a b Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K (April 2000). "TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway". Mol. Cell. 5 (4): 649–658. doi:10.1016/s1097-2765(00)80244-0. PMID 10882101.
  15. ^ a b Takaesu G, Ninomiya-Tsuji J, Kishida S, Li X, Stark GR, Matsumoto K (April 2001). "Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway". Mol. Cell. Biol. 21 (7): 2475–2484. doi:10.1128/MCB.21.7.2475-2484.2001. PMC 86880. PMID 11259596.
  16. ^ Kimura N, Matsuo R, Shibuya H, Nakashima K, Taga T (June 2000). "BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6". J. Biol. Chem. 275 (23): 17647–17652. doi:10.1074/jbc.M908622199. PMID 10748100.
  17. ^ Yanagisawa M, Nakashima K, Takeda K, Ochiai W, Takizawa T, Ueno M, Takizawa M, Shibuya H, Taga T (December 2001). "Inhibition of BMP2-induced, TAK1 kinase-mediated neurite outgrowth by Smad6 and Smad7". Genes Cells. 6 (12): 1091–1099. doi:10.1046/j.1365-2443.2001.00483.x. PMID 11737269.
  18. ^ Hanada M, Ninomiya-Tsuji J, Komaki K, Ohnishi M, Katsura K, Kanamaru R, Matsumoto K, Tamura S (February 2001). "Regulation of the TAK1 signaling pathway by protein phosphatase 2C". J. Biol. Chem. 276 (8): 5753–5759. doi:10.1074/jbc.M007773200. PMID 11104763.
  19. ^ Walsh MC, Kim GK, Maurizio PL, Molnar EE, Choi Y (2008). Unutmaz D (ed.). "TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL". PLoS ONE. 3 (12): e4064. doi:10.1371/journal.pone.0004064. PMC 2603309. PMID 19112497.
  20. ^ Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landström M (October 2008). "The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner". Nat. Cell Biol. 10 (10): 1199–1207. doi:10.1038/ncb1780. PMID 18758450.

Further reading[edit]