From Wikipedia, the free encyclopedia
Jump to: navigation, search
Microtubule associated serine/threonine kinase 2
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols MAST2 ; MAST205; MTSSK
External IDs OMIM612257 MGI894676 HomoloGene7428 IUPHAR: 1511 GeneCards: MAST2 Gene
EC number
RNA expression pattern
PBB GE MAST2 211593 s at tn.png
PBB GE MAST2 215660 s at tn.png
PBB GE MAST2 215903 s at tn.png
More reference expression data
Species Human Mouse
Entrez 23139 17776
Ensembl ENSG00000086015 ENSMUSG00000003810
UniProt Q6P0Q8 Q60592
RefSeq (mRNA) NM_015112 NM_001042743
RefSeq (protein) NP_055927 NP_001036208
Location (UCSC) Chr 1:
45.79 – 46.04 Mb
Chr 4:
116.31 – 116.46 Mb
PubMed search [1] [2]

Microtubule-associated serine/threonine-protein kinase 2 is an enzyme that in humans is encoded by the MAST2 gene.[1] The protein encoded by this gene controls TRAF6 and NF-kappaB activity.[2]


MAST2 has been shown to interact with PCLKC.[3]

Model organisms[edit]

Model organisms have been used in the study of MAST2 function. A conditional knockout mouse line called Mast2tm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[4] Male and female animals underwent a standardized phenotypic screen[5] to determine the effects of deletion.[6][7][8][9] Additional screens performed: - In-depth immunological phenotyping[10]


  1. ^ "Entrez Gene: MAST2 microtubule associated serine/threonine kinase 2". 
  2. ^ Xiong H, Li H, Chen Y, Zhao J, Unkeless JC (2004). "Interaction of TRAF6 with MAST205 regulates NF-kappaB activation and MAST205 stability". J. Biol. Chem. 279 (42): 43675–83. doi:10.1074/jbc.M404328200. PMID 15308666. 
  3. ^ Okazaki N, Takahashi N, Kojima S, Masuho Y, Koga H (July 2002). "Protocadherin LKC, a new candidate for a tumor suppressor of colon and liver cancers, its association with contact inhibition of cell proliferation". Carcinogenesis 23 (7): 1139–48. doi:10.1093/carcin/23.7.1139. PMID 12117771. 
  4. ^ Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Opthalmologica 88: 925-7.doi:10.1111/j.1755-3768.2010.4142.x: Wiley. 
  5. ^ a b "International Mouse Phenotyping Consortium". 
  6. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750. 
  7. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  8. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  9. ^ White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Sanger Institute Mouse Genetics Project, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMID 23870131. 
  10. ^ a b "Infection and Immunity Immunophenotyping (3i) Consortium". 

Further reading[edit]