PLK4

From Wikipedia, the free encyclopedia
Jump to: navigation, search
PLK4
Protein PLK4 PDB 1mby.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PLK4, SAK, STK18, MCCRP2, polo like kinase 4
External IDs MGI: 101783 HomoloGene: 7962 GeneCards: 10733
RNA expression pattern
PBB GE PLK4 204886 at tn.png

PBB GE PLK4 204887 s at tn.png

PBB GE PLK4 211088 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001190799
NM_001190801
NM_014264

NM_011495
NM_173169

RefSeq (protein)

NP_001177728.1
NP_001177730.1
NP_055079.3

NP_035625.2
NP_775261.2

Location (UCSC) Chr 4: 127.88 – 127.9 Mb Chr 3: 40.8 – 40.82 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

Serine/threonine-protein kinase PLK4 also known as polo-like kinase 4 is an enzyme that in humans is encoded by the PLK4 gene.[1] The Drosophila homolog is SAK, the C elegans homolog is zyg-1, and the Xenopus homolog is Plx4.[2]

Function[edit]

PLK4 encodes a member of the polo family of serine/threonine protein kinases. The protein localizes to centrioles—complex microtubule-based structures found in centrosomes—and regulates centriole duplication during the cell cycle.[1] Overexpression of PLK4 results in centrosome amplification, and knockdown of PLK4 results in loss of centrosomes.[3][4]

Structure[edit]

PLK4 contains an N-terminal kinase domain (residues 12-284) and a C-terminal localization domain (residues 596-898).[5] Other polo-like kinase members contain 2 C-terminal polo box domains (PBD). PLK4 contains these 2 domains in addition to a third PBD, which facilitates oligomerization, targeting, and promotes trans-autophosphorylation, limiting centriole duplication to once per cell cycle.[5]

As a cancer drug target[edit]

Inhibitors of the enzymatic activity PLK4 have potential in the treatment of cancer.[6] The PLK4 inhibitor R1530 down regulates the expression of mitotic checkpoint kinase BubR1 that in turn leads to polyploidy rendering cancer cells unstable and more sensitive to cancer chemotherapy. Furthermore, normal cells are resistant to the polyploidy inducing effects of R1530.[7]

Another PLK4 inhibitor, CFI-400945 has demonstrated efficacy in animal models of breast and ovarian cancer.[8][9]

Another PLK4 inhibitor, centrinone, has been reported to deplete centrioles in human and other vertebrate cell types, which resulted in a p53-dependent cell cycle arrest in G1.[10] Inhibition of PLK4 using a chemical genetic strategy has validated this p53-dependent cell cycle arrest in G1.[11]

Interactions and Substrates[edit]

Documented PLK4 substrates include STIL, GCP6,[12] Hand1,[13][14] Ect2,[15] FBXW5,[16] and itself (via autophosphorylation). Autophosphorylation of PLK4 results in ubiquitination and subsequent destruction by the proteasome.[17][18]

PLK4 has been shown to interact with Stratifin.[19]

References[edit]

  1. ^ a b "Entrez Gene: PLK4 polo-like kinase 4 (Drosophila)". 
  2. ^ Shimanovskaya E, Viscardi V, Lesigang J, Lettman MM, Qiao R, Svergun DI, Round A, Oegema K, Dong G (Aug 2014). "Structure of the C. elegans ZYG-1 cryptic polo box suggests a conserved mechanism for centriolar docking of Plk4 kinases". Structure 22 (8): 1090–104. doi:10.1016/j.str.2014.05.009. PMID 24980795. 
  3. ^ Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Théry M, Pellman D (Jun 2014). "Oncogene-like induction of cellular invasion from centrosome amplification". Nature 510 (7503): 167–71. doi:10.1038/nature13277. PMID 24739973. 
  4. ^ Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (Nov 2005). "The Polo kinase Plk4 functions in centriole duplication". Nature Cell Biology 7 (11): 1140–6. doi:10.1038/ncb1320. PMID 16244668. 
  5. ^ a b Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, Slep KC (Nov 2012). "The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication". Structure 20 (11): 1905–17. doi:10.1016/j.str.2012.08.025. PMC 3496063. PMID 23000383. 
  6. ^ Mason J, Wei S, Luo X, Nadeem V, Kiarash R, Huang P, Awrey D, Leung G, Beletskaya I, Feher M, Forrest B, Laufer R, Sampson P, Li SW, Liu Y, Lang Y, Pauls H, Mak T, Pan JG. "Inhibition of Polo-like kinase 4 as an anti-cancer strategy". Abstract LB-215. Cancer Research. pp. LB–215. 
  7. ^ Tovar C, Higgins B, Deo D, Kolinsky K, Liu JJ, Heimbrook DC, Vassilev LT (Aug 2010). "Small-molecule inducer of cancer cell polyploidy promotes apoptosis or senescence: Implications for therapy". Cell Cycle 9 (16): 3364–75. doi:10.4161/cc.9.16.12732. PMID 20814247. 
  8. ^ "Experimental drug shows promise in treating breast, ovarian cancer". News. Canadian Broadcasting Corporation. 2013-06-18. 
  9. ^ Yu B, Yu Z, Qi PP, Yu DQ, Liu HM (May 2015). "Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles: success and challenges". European Journal of Medicinal Chemistry 95: 35–40. doi:10.1016/j.ejmech.2015.03.020. PMID 25791677. 
  10. ^ Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, Seo CP, Hsia JE, Kim SK, Mitchell JW, Mitchell BJ, Desai A, Gahman TC, Shiau AK, Oegema K (Jun 2015). "Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4". Science 348 (6239): 1155–60. doi:10.1126/science.aaa5111. PMID 25931445. 
  11. ^ Lambrus BG, Uetake Y, Clutario KM, Daggubati V, Snyder M, Sluder G, Holland AJ (Jul 2015). "p53 protects against genome instability following centriole duplication failure". The Journal of Cell Biology 210 (1): 63–77. doi:10.1083/jcb.201502089. PMC 4494000. PMID 26150389. 
  12. ^ Bahtz R, Seidler J, Arnold M, Haselmann-Weiss U, Antony C, Lehmann WD, Hoffmann I (Jan 2012). "GCP6 is a substrate of Plk4 and required for centriole duplication". Journal of Cell Science 125 (Pt 2): 486–96. doi:10.1242/jcs.093930. PMID 22302995. 
  13. ^ Martindill DM, Risebro CA, Smart N, Franco-Viseras Mdel M, Rosario CO, Swallow CJ, Dennis JW, Riley PR (Oct 2007). "Nucleolar release of Hand1 acts as a molecular switch to determine cell fate". Nature Cell Biology 9 (10): 1131–41. doi:10.1038/ncb1633. PMID 17891141. 
  14. ^ Hudson JW, Kozarova A, Cheung P, Macmillan JC, Swallow CJ, Cross JC, Dennis JW (Mar 2001). "Late mitotic failure in mice lacking Sak, a polo-like kinase". Current Biology 11 (6): 441–6. PMID 11301255. 
  15. ^ Rosario CO, Ko MA, Haffani YZ, Gladdy RA, Paderova J, Pollett A, Squire JA, Dennis JW, Swallow CJ (Apr 2010). "Plk4 is required for cytokinesis and maintenance of chromosomal stability". Proceedings of the National Academy of Sciences of the United States of America 107 (15): 6888–93. doi:10.1073/pnas.0910941107. PMC 2872425. PMID 20348415. 
  16. ^ Puklowski A, Homsi Y, Keller D, May M, Chauhan S, Kossatz U, Grünwald V, Kubicka S, Pich A, Manns MP, Hoffmann I, Gönczy P, Malek NP (Aug 2011). "The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication". Nature Cell Biology 13 (8): 1004–9. doi:10.1038/ncb2282. PMID 21725316. 
  17. ^ Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M, Duarte P, Borrego-Pinto J, Gilberto S, Amado T, Brito D, Rodrigues-Martins A, Debski J, Dzhindzhev N, Bettencourt-Dias M (Nov 2013). "Regulation of autophosphorylation controls PLK4 self-destruction and centriole number". Current Biology 23 (22): 2245–54. doi:10.1016/j.cub.2013.09.037. PMID 24184099. 
  18. ^ Guderian G, Westendorf J, Uldschmid A, Nigg EA (Jul 2010). "Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation". Journal of Cell Science 123 (Pt 13): 2163–9. doi:10.1242/jcs.068502. PMID 20516151. 
  19. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514. 

Further reading[edit]

  • Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (Aug 2007). "Plk4-induced centriole biogenesis in human cells". Developmental Cell 13 (2): 190–202. doi:10.1016/j.devcel.2007.07.002. PMID 17681131. 
  • Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK, Carmo N, Balloux F, Callaini G, Glover DM (Dec 2005). "SAK/PLK4 is required for centriole duplication and flagella development". Current Biology 15 (24): 2199–207. doi:10.1016/j.cub.2005.11.042. PMID 16326102. 
  • Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (Nov 2005). "The Polo kinase Plk4 functions in centriole duplication". Nature Cell Biology 7 (11): 1140–6. doi:10.1038/ncb1320. PMID 16244668. 
  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514. 
  • Li J, Tan M, Li L, Pamarthy D, Lawrence TS, Sun Y (Apr 2005). "SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing". Neoplasia 7 (4): 312–23. doi:10.1593/neo.04325. PMC 1501148. PMID 15967108. 
  • Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (Mar 2005). "High-throughput mapping of a dynamic signaling network in mammalian cells". Science 307 (5715): 1621–5. doi:10.1126/science.1105776. PMID 15761153. 
  • Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K, Sugano S (Sep 2004). "Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions". Genome Research 14 (9): 1711–8. doi:10.1101/gr.2435604. PMC 515316. PMID 15342556. 
  • Macmillan JC, Hudson JW, Bull S, Dennis JW, Swallow CJ (Oct 2001). "Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer". Annals of Surgical Oncology 8 (9): 729–40. doi:10.1007/s10434-001-0729-6. PMID 11597015. 
  • Yamashita Y, Kajigaya S, Yoshida K, Ueno S, Ota J, Ohmine K, Ueda M, Miyazato A, Ohya K, Kitamura T, Ozawa K, Mano H (Oct 2001). "Sak serine-threonine kinase acts as an effector of Tec tyrosine kinase". The Journal of Biological Chemistry 276 (42): 39012–20. doi:10.1074/jbc.M106249200. PMID 11489907. 
  • Hudson JW, Chen L, Fode C, Binkert C, Dennis JW (Jan 2000). "Sak kinase gene structure and transcriptional regulation". Gene 241 (1): 65–73. doi:10.1016/S0378-1119(99)00467-9. PMID 10607900. 
  • Schultz SJ, Nigg EA (Oct 1993). "Identification of 21 novel human protein kinases, including 3 members of a family related to the cell cycle regulator nimA of Aspergillus nidulans". Cell Growth & Differentiation 4 (10): 821–30. PMID 8274451.