VDAC2: Difference between revisions
Added to sections Introduction, Structure, Function, Clinical Significance, Interactions, and References |
m Removed a redundant sentence |
||
Line 1: | Line 1: | ||
{{PBB|geneid=7417}} |
{{PBB|geneid=7417}} |
||
'''Voltage-dependent anion-selective channel protein 2''' is a [[protein]] that in humans is encoded by the ''VDAC2'' [[gene]] on chromosome 10.<ref name="pmid7517385">{{cite journal | author = Blachly-Dyson E, Baldini A, Litt M, McCabe ER, Forte M | title = Human genes encoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: mapping and identification of two new isoforms | journal = Genomics | volume = 20 | issue = 1 | pages = 62–7 |date=Jul 1994 | pmid = 7517385 | pmc = | doi = 10.1006/geno.1994.1127 }}</ref><ref name="pmid10049775">{{cite journal | author = Messina A, Oliva M, Rosato C, Huizing M, Ruitenbeek W, van den Heuvel LP, Forte M, Rocchi M, De Pinto V | title = Mapping of the human Voltage-Dependent Anion Channel isoforms 1 and 2 reconsidered | journal = Biochem Biophys Res Commun | volume = 255 | issue = 3 | pages = 707–10 |date=Apr 1999 | pmid = 10049775 | pmc = | doi = 10.1006/bbrc.1998.0136 }}</ref> |
'''Voltage-dependent anion-selective channel protein 2''' is a [[protein]] that in humans is encoded by the ''VDAC2'' [[gene]] on chromosome 10.<ref name="pmid7517385">{{cite journal | author = Blachly-Dyson E, Baldini A, Litt M, McCabe ER, Forte M | title = Human genes encoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: mapping and identification of two new isoforms | journal = Genomics | volume = 20 | issue = 1 | pages = 62–7 |date=Jul 1994 | pmid = 7517385 | pmc = | doi = 10.1006/geno.1994.1127 }}</ref><ref name="pmid10049775">{{cite journal | author = Messina A, Oliva M, Rosato C, Huizing M, Ruitenbeek W, van den Heuvel LP, Forte M, Rocchi M, De Pinto V | title = Mapping of the human Voltage-Dependent Anion Channel isoforms 1 and 2 reconsidered | journal = Biochem Biophys Res Commun | volume = 255 | issue = 3 | pages = 707–10 |date=Apr 1999 | pmid = 10049775 | pmc = | doi = 10.1006/bbrc.1998.0136 }}</ref> This protein is a [[voltage-dependent anion channel]] and shares high structural homology with the other VDAC isoforms.<ref name="pmidpmid9653160">{{vcite2 journal | vauthors = Mao M, Fu G, Wu JS, Zhang QH, Zhou J, Kan LX, Huang QH, He KL, Gu BW, Han ZG, Shen Y, Gu J, Yu YP, Xu SH, Wang YX, Chen SJ, Chen Z | title = Identification of genes expressed in human CD34(+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 95 | issue = 14 | pages = 8175–80 | date = Jul 1998 | pmid = 9653160 | pmc = 20949 | doi = 10.1073/pnas.95.14.8175 | url = http://www.pnas.org/cgi/pmidlookup?view=long&pmid=9653160 }}</ref><ref name="pmidpmid9781040">{{vcite2 journal | vauthors = Rahmani Z, Maunoury C, Siddiqui A | title = Isolation of a novel human voltage-dependent anion channel gene | journal = European Journal of Human Genetics | volume = 6 | issue = 4 | pages = 337–40 | year = 1998 | pmid = 9781040 | doi = 10.1038/sj.ejhg.5200198 }}</ref><ref name="pmid25084457">{{vcite2 journal | vauthors = Amodeo GF, Scorciapino MA, Messina A, De Pinto V, Ceccarelli M | title = Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel | journal = PloS One | volume = 9 | issue = 8 | pages = e103879 | date = 2014 | pmid = 25084457 | doi = 10.1371/journal.pone.0103879 }}</ref> VDACs are generally involved in the regulation of cell [[metabolism]], [[mitochondrion|mitochondrial]] [[apoptosis]], and spermatogenesis.<ref name="pmid21241999">{{cite journal|last1=Subedi|first1=KP|last2=Kim|first2=JC|last3=Kang|first3=M|last4=Son|first4=MJ|last5=Kim|first5=YS|last6=Woo|first6=SH|title=Voltage-dependent anion channel 2 modulates resting Ca²+ sparks, but not action potential-induced Ca²+ signaling in cardiac myocytes.|journal=Cell calcium|date=February 2011|volume=49|issue=2|pages=136-43|pmid=21241999}}</ref><ref name="pmid22842492">{{cite journal|last1=Alvira|first1=CM|last2=Umesh|first2=A|last3=Husted|first3=C|last4=Ying|first4=L|last5=Hou|first5=Y|last6=Lyu|first6=SC|last7=Nowak|first7=J|last8=Cornfield|first8=DN|title=Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production.|journal=American journal of respiratory cell and molecular biology|date=November 2012|volume=47|issue=5|pages=669-78|pmid=22842492}}</ref><ref name="pmid12881569">{{cite journal | author = Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ | title = VDAC2 inhibits BAK activation and mitochondrial apoptosis | journal = Science | volume = 301 | issue = 5632 | pages = 513–7 |date=July 2003 | pmid = 12881569 | doi = 10.1126/science.1083995 | url = }}</ref><ref name="pmid22114330">{{cite journal|last1=Li|first1=Z|last2=Wang|first2=Y|last3=Xue|first3=Y|last4=Li|first4=X|last5=Cao|first5=H|last6=Zheng|first6=SJ|title=Critical role for voltage-dependent anion channel 2 in infectious bursal disease virus-induced apoptosis in host cells via interaction with VP5.|journal=Journal of virology|date=February 2012|volume=86|issue=3|pages=1328-38|pmid=22114330}}</ref> Additionally, VDAC2 participates in cardiac contractions and pulmonary circulation, which implicate it in cardiopulmonary diseases.<ref name="pmid21241999">{{cite journal|last1=Subedi|first1=KP|last2=Kim|first2=JC|last3=Kang|first3=M|last4=Son|first4=MJ|last5=Kim|first5=YS|last6=Woo|first6=SH|title=Voltage-dependent anion channel 2 modulates resting Ca²+ sparks, but not action potential-induced Ca²+ signaling in cardiac myocytes.|journal=Cell calcium|date=February 2011|volume=49|issue=2|pages=136-43|pmid=21241999}}</ref><ref name="pmid22842492">{{cite journal|last1=Alvira|first1=CM|last2=Umesh|first2=A|last3=Husted|first3=C|last4=Ying|first4=L|last5=Hou|first5=Y|last6=Lyu|first6=SC|last7=Nowak|first7=J|last8=Cornfield|first8=DN|title=Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production.|journal=American journal of respiratory cell and molecular biology|date=November 2012|volume=47|issue=5|pages=669-78|pmid=22842492}}</ref> VDAC2 also mediates immune response to infectious bursal disease (IBD).<ref name="pmid22842492">{{cite journal|last1=Alvira|first1=CM|last2=Umesh|first2=A|last3=Husted|first3=C|last4=Ying|first4=L|last5=Hou|first5=Y|last6=Lyu|first6=SC|last7=Nowak|first7=J|last8=Cornfield|first8=DN|title=Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production.|journal=American journal of respiratory cell and molecular biology|date=November 2012|volume=47|issue=5|pages=669-78|pmid=22842492}}</ref> |
||
This protein is a [[voltage-dependent anion channel]] and shares high structural homology with the other VDAC isoforms.<ref name="pmidpmid9653160">{{vcite2 journal | vauthors = Mao M, Fu G, Wu JS, Zhang QH, Zhou J, Kan LX, Huang QH, He KL, Gu BW, Han ZG, Shen Y, Gu J, Yu YP, Xu SH, Wang YX, Chen SJ, Chen Z | title = Identification of genes expressed in human CD34(+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 95 | issue = 14 | pages = 8175–80 | date = Jul 1998 | pmid = 9653160 | pmc = 20949 | doi = 10.1073/pnas.95.14.8175 | url = http://www.pnas.org/cgi/pmidlookup?view=long&pmid=9653160 }}</ref><ref name="pmidpmid9781040">{{vcite2 journal | vauthors = Rahmani Z, Maunoury C, Siddiqui A | title = Isolation of a novel human voltage-dependent anion channel gene | journal = European Journal of Human Genetics | volume = 6 | issue = 4 | pages = 337–40 | year = 1998 | pmid = 9781040 | doi = 10.1038/sj.ejhg.5200198 }}</ref><ref name="pmid25084457">{{vcite2 journal | vauthors = Amodeo GF, Scorciapino MA, Messina A, De Pinto V, Ceccarelli M | title = Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel | journal = PloS One | volume = 9 | issue = 8 | pages = e103879 | date = 2014 | pmid = 25084457 | doi = 10.1371/journal.pone.0103879 }}</ref> VDACs are generally involved in the regulation of cell [[metabolism]], [[mitochondrion|mitochondrial]] [[apoptosis]], and spermatogenesis.<ref name="pmid21241999">{{cite journal|last1=Subedi|first1=KP|last2=Kim|first2=JC|last3=Kang|first3=M|last4=Son|first4=MJ|last5=Kim|first5=YS|last6=Woo|first6=SH|title=Voltage-dependent anion channel 2 modulates resting Ca²+ sparks, but not action potential-induced Ca²+ signaling in cardiac myocytes.|journal=Cell calcium|date=February 2011|volume=49|issue=2|pages=136-43|pmid=21241999}}</ref><ref name="pmid22842492">{{cite journal|last1=Alvira|first1=CM|last2=Umesh|first2=A|last3=Husted|first3=C|last4=Ying|first4=L|last5=Hou|first5=Y|last6=Lyu|first6=SC|last7=Nowak|first7=J|last8=Cornfield|first8=DN|title=Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production.|journal=American journal of respiratory cell and molecular biology|date=November 2012|volume=47|issue=5|pages=669-78|pmid=22842492}}</ref><ref name="pmid12881569">{{cite journal | author = Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ | title = VDAC2 inhibits BAK activation and mitochondrial apoptosis | journal = Science | volume = 301 | issue = 5632 | pages = 513–7 |date=July 2003 | pmid = 12881569 | doi = 10.1126/science.1083995 | url = }}</ref><ref name="pmid22114330">{{cite journal|last1=Li|first1=Z|last2=Wang|first2=Y|last3=Xue|first3=Y|last4=Li|first4=X|last5=Cao|first5=H|last6=Zheng|first6=SJ|title=Critical role for voltage-dependent anion channel 2 in infectious bursal disease virus-induced apoptosis in host cells via interaction with VP5.|journal=Journal of virology|date=February 2012|volume=86|issue=3|pages=1328-38|pmid=22114330}}</ref> Additionally, VDAC2 participates in cardiac contractions and pulmonary circulation, which implicate it in cardiopulmonary diseases.<ref name="pmid21241999">{{cite journal|last1=Subedi|first1=KP|last2=Kim|first2=JC|last3=Kang|first3=M|last4=Son|first4=MJ|last5=Kim|first5=YS|last6=Woo|first6=SH|title=Voltage-dependent anion channel 2 modulates resting Ca²+ sparks, but not action potential-induced Ca²+ signaling in cardiac myocytes.|journal=Cell calcium|date=February 2011|volume=49|issue=2|pages=136-43|pmid=21241999}}</ref><ref name="pmid22842492">{{cite journal|last1=Alvira|first1=CM|last2=Umesh|first2=A|last3=Husted|first3=C|last4=Ying|first4=L|last5=Hou|first5=Y|last6=Lyu|first6=SC|last7=Nowak|first7=J|last8=Cornfield|first8=DN|title=Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production.|journal=American journal of respiratory cell and molecular biology|date=November 2012|volume=47|issue=5|pages=669-78|pmid=22842492}}</ref> VDAC2 also mediates immune response to infectious bursal disease (IBD).<ref name="pmid22842492">{{cite journal|last1=Alvira|first1=CM|last2=Umesh|first2=A|last3=Husted|first3=C|last4=Ying|first4=L|last5=Hou|first5=Y|last6=Lyu|first6=SC|last7=Nowak|first7=J|last8=Cornfield|first8=DN|title=Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production.|journal=American journal of respiratory cell and molecular biology|date=November 2012|volume=47|issue=5|pages=669-78|pmid=22842492}}</ref> |
|||
== Structure == |
== Structure == |
Revision as of 05:03, 8 June 2015
Voltage-dependent anion-selective channel protein 2 is a protein that in humans is encoded by the VDAC2 gene on chromosome 10.[1][2] This protein is a voltage-dependent anion channel and shares high structural homology with the other VDAC isoforms.[3][4][5] VDACs are generally involved in the regulation of cell metabolism, mitochondrial apoptosis, and spermatogenesis.[6][7][8][9] Additionally, VDAC2 participates in cardiac contractions and pulmonary circulation, which implicate it in cardiopulmonary diseases.[6][7] VDAC2 also mediates immune response to infectious bursal disease (IBD).[7]
Structure
The three VDAC isoforms in human are highly conserved, particularly with respect to their 3D structure. VDACs form a wide β-barrel structure, inside of which the N-terminal resides to partially close the pore. The sequence of the VDAC2 isoform contains an abundance of cysteines, which allow for the formation of disulfide bridges and, ultimately, affect the flexibility of the β-barrel. In particular, VDAC2 possesses an N-terminal longer by 11 residues compared to the other two isoforms.[5]
Function
VDAC2 belongs to the mitochondrial porin family and is expected to share similar biological functions to the other VDAC isoforms. VDACs generally localize are involved in cellular energy metabolism by transporting ATP and other small ions and metabolites across the outer mitochondrial membrane.[6][7] In mammalian cardiomyocytes, VDAC2 promotes mitochondrial transport of calcium ions in order to power cardiac contractions.[6]
In addition, VDACs form part of the mitochondrial permeability transition pore (MPTP) and, thus, facilitate cytochrome C release, leading to apoptosis.[10][6] VDACs have also been observed to interact with pro- or antiapoptotic proteins, such as Bcl-2 family proteins and kinases, and so may contribute to apoptosis independently from the MPTP.[10][7][9] VDAC2 in particular has demonstrated a protective effect in cells undergoing mitochondrial apoptosis, and may even confer protection during aging.[11][12]
Furthermore, VDAcs have been linked to spermatogenesis, sperm maturation, motility, and fertilization.[9] Though all VDAC isoforms are ubiquitously expressed, VDAC2 is majorly found in the sperm outer dense fiber (ODF), where it is hypothesized to promote proper assembly and maintenance of sperm flagella.[13][14] It also localizes to the acrosomal membrane of the sperm, where it putatively mediates calcium ion transmembrane transport.[15]
Clinical Significance
This protein has been linked persistent pulmonary hypertension of the newborn (PPHN), which causes a large majority of neonatal morbidity and mortality, due to its role as a major regulator of endothelium-dependent nitric oxide synthase (eNOS) in the pulmonary endothelium. eNOS has been attributed with regulating NOS activity in response to physiological stimuli, which is vital to maintain NO production for proper blood circulation to the lungs. As a result, VDAC2 is significantly involved in pulmonary circulation and may become a therapeutic target for treating diseases such as pulmonary hypertension,[7]
VDAC2 may also serve an immune function, as it has been hypothesized to detect and induce apoptosis in cells infected by the IBD virus. IBD, the equivalent HIV in birds, can compromise their immune systems and even cause fatal injury to the lymphoid organ, Studies of this process indicate that VDAC2 interacts with the viral protein V5 to mediate cell death.[9]
Interactions
VDAC2 has been shown to interact with:
See also
References
- ^ Blachly-Dyson E, Baldini A, Litt M, McCabe ER, Forte M (Jul 1994). "Human genes encoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: mapping and identification of two new isoforms". Genomics. 20 (1): 62–7. doi:10.1006/geno.1994.1127. PMID 7517385.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Messina A, Oliva M, Rosato C, Huizing M, Ruitenbeek W, van den Heuvel LP, Forte M, Rocchi M, De Pinto V (Apr 1999). "Mapping of the human Voltage-Dependent Anion Channel isoforms 1 and 2 reconsidered". Biochem Biophys Res Commun. 255 (3): 707–10. doi:10.1006/bbrc.1998.0136. PMID 10049775.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Mao M, Fu G, Wu JS, Zhang QH, Zhou J, Kan LX, Huang QH, He KL, Gu BW, Han ZG, Shen Y, Gu J, Yu YP, Xu SH, Wang YX, Chen SJ, Chen Z (Jul 1998). "Identification of genes expressed in human CD34(+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning". Proceedings of the National Academy of Sciences of the United States of America. 95 (14): 8175–80. doi:10.1073/pnas.95.14.8175. PMC 20949. PMID 9653160.
- ^ Rahmani Z, Maunoury C, Siddiqui A (1998). "Isolation of a novel human voltage-dependent anion channel gene". European Journal of Human Genetics. 6 (4): 337–40. doi:10.1038/sj.ejhg.5200198. PMID 9781040.
- ^ a b Amodeo GF, Scorciapino MA, Messina A, De Pinto V, Ceccarelli M (2014). "Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel". PloS One. 9 (8): e103879. doi:10.1371/journal.pone.0103879. PMID 25084457.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b c d e Subedi, KP; Kim, JC; Kang, M; Son, MJ; Kim, YS; Woo, SH (February 2011). "Voltage-dependent anion channel 2 modulates resting Ca²+ sparks, but not action potential-induced Ca²+ signaling in cardiac myocytes". Cell calcium. 49 (2): 136–43. PMID 21241999.
- ^ a b c d e f g Alvira, CM; Umesh, A; Husted, C; Ying, L; Hou, Y; Lyu, SC; Nowak, J; Cornfield, DN (November 2012). "Voltage-dependent anion channel-2 interaction with nitric oxide synthase enhances pulmonary artery endothelial cell nitric oxide production". American journal of respiratory cell and molecular biology. 47 (5): 669–78. PMID 22842492.
- ^ Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (July 2003). "VDAC2 inhibits BAK activation and mitochondrial apoptosis". Science. 301 (5632): 513–7. doi:10.1126/science.1083995. PMID 12881569.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b c d e Li, Z; Wang, Y; Xue, Y; Li, X; Cao, H; Zheng, SJ (February 2012). "Critical role for voltage-dependent anion channel 2 in infectious bursal disease virus-induced apoptosis in host cells via interaction with VP5". Journal of virology. 86 (3): 1328–38. PMID 22114330.
- ^ a b Lee, MJ; Kim, JY; Suk, K; Park, JH (May 2004). "Identification of the hypoxia-inducible factor 1 alpha-responsive HGTD-P gene as a mediator in the mitochondrial apoptotic pathway". Molecular and cellular biology. 24 (9): 3918–27. PMID 15082785.
- ^ a b De Pinto, V; Guarino, F; Guarnera, A; Messina, A; Reina, S; Tomasello, FM; Palermo, V; Mazzoni, C (2010). "Characterization of human VDAC isoforms: a peculiar function for VDAC3?". Biochimica et biophysica acta. 1797 (6–7): 1268–75. PMID 20138821.
- ^ Reina, S; Palermo, V; Guarnera, A; Guarino, F; Messina, A; Mazzoni, C; De Pinto, V (2 July 2010). "Swapping of the N-terminus of VDAC1 with VDAC3 restores full activity of the channel and confers anti-aging features to the cell". FEBS letters. 584 (13): 2837–44. PMID 20434446.
- ^ Majumder, S; Slabodnick, M; Pike, A; Marquardt, J; Fisk, HA (1 October 2012). "VDAC3 regulates centriole assembly by targeting Mps1 to centrosomes". Cell cycle (Georgetown, Tex.). 11 (19): 3666–78. PMID 22935710.
- ^ Majumder, S; Fisk, HA (1 March 2013). "VDAC3 and Mps1 negatively regulate ciliogenesis". Cell cycle (Georgetown, Tex.). 12 (5): 849–58. PMID 23388454.
- ^ Liu, B; Wang, P; Wang, Z; Zhang, W (9 February 2011). "The use of anti-VDAC2 antibody for the combined assessment of human sperm acrosome integrity and ionophore A23187-induced acrosome reaction". PloS one. 6 (2): e16985. PMID 21347391.
- ^ Sun, Y; Vashisht, AA; Tchieu, J; Wohlschlegel, JA; Dreier, L (23 November 2012). "Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy". The Journal of biological chemistry. 287 (48): 40652–60. PMID 23060438.
Further reading
- Blachly-Dyson E, Zambronicz EB, Yu WH; et al. (1993). "Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel". J. Biol. Chem. 268 (3): 1835–41. PMID 8420959.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - Valis K, Neubauerova J, Man P; et al. (2008). "VDAC2 and aldolase A identified as membrane proteins of K562 cells with increased expression under iron deprivation". Mol. Cell. Biochem. 311 (1–2): 225–31. doi:10.1007/s11010-008-9712-x. PMID 18278581.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - Mannella CA (1998). "Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications". J. Struct. Biol. 121 (2): 207–18. doi:10.1006/jsbi.1997.3954. PMID 9615439.
- Bogenhagen DF, Rousseau D, Burke S (2008). "The layered structure of human mitochondrial DNA nucleoids". J. Biol. Chem. 283 (6): 3665–75. doi:10.1074/jbc.M708444200. PMID 18063578.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - Chandra D, Choy G, Daniel PT, Tang DG (2005). "Bax-dependent regulation of Bak by voltage-dependent anion channel 2". J. Biol. Chem. 280 (19): 19051–61. doi:10.1074/jbc.M501391200. PMID 15757910.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - Olsen JV, Blagoev B, Gnad F; et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - Yoo BC, Fountoulakis M, Cairns N, Lubec G (2001). "Changes of voltage-dependent anion-selective channel proteins VDAC1 and VDAC2 brain levels in patients with Alzheimer's disease and Down syndrome". Electrophoresis. 22 (1): 172–9. doi:10.1002/1522-2683(200101)22:1<172::AID-ELPS172>3.0.CO;2-P. PMID 11197169.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Ahmed M, Forsberg J, Bergsten P (2005). "Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry". J. Proteome Res. 4 (3): 931–40. doi:10.1021/pr050024a. PMID 15952740.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Ha H, Hajek P, Bedwell DM, Burrows PD (1993). "A mitochondrial porin cDNA predicts the existence of multiple human porins". J. Biol. Chem. 268 (16): 12143–9. PMID 7685033.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Gerhard DS, Wagner L, Feingold EA; et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - Yu WH, Wolfgang W, Forte M (1995). "Subcellular localization of human voltage-dependent anion channel isoforms". J. Biol. Chem. 270 (23): 13998–4006. doi:10.1074/jbc.270.23.13998. PMID 7539795.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - Hinsch KD, De Pinto V, Aires VA; et al. (2004). "Voltage-dependent anion-selective channels VDAC2 and VDAC3 are abundant proteins in bovine outer dense fibers, a cytoskeletal component of the sperm flagellum". J. Biol. Chem. 279 (15): 15281–8. doi:10.1074/jbc.M313433200. PMID 14739283.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - Decker WK, Bowles KR, Schatte EC; et al. (1999). "Revised fine mapping of the human voltage-dependent anion channel loci by radiation hybrid analysis". Mamm. Genome. 10 (10): 1041–2. doi:10.1007/s003359901158. PMID 10501981.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - Andersen JS, Lam YW, Leung AK; et al. (2005). "Nucleolar proteome dynamics". Nature. 433 (7021): 77–83. doi:10.1038/nature03207. PMID 15635413.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - Bernhard OK, Cunningham AL, Sheil MM (2004). "Analysis of proteins copurifying with the CD4/lck complex using one-dimensional polyacrylamide gel electrophoresis and mass spectrometry: comparison with affinity-tag based protein detection and evaluation of different solubilization methods". J. Am. Soc. Mass Spectrom. 15 (4): 558–67. doi:10.1016/j.jasms.2003.12.006. PMID 15047060.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Strausberg RL, Feingold EA, Grouse LH; et al. (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - Deloukas P, Earthrowl ME, Grafham DV; et al. (2004). "The DNA sequence and comparative analysis of human chromosome 10". Nature. 429 (6990): 375–81. doi:10.1038/nature02462. PMID 15164054.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - Ewing RM, Chu P, Elisma F; et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link)
External links
- VDAC2+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH)