Jump to content

TRPM

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Rjwilmsi (talk | contribs) at 08:55, 3 August 2014 (Journal cites:, added 2 PMCs using AWB (10340)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

TRPM is a family of transient receptor potential ion channels (the "M" stands for "melastatin").[1] Functional TRPM channels are believed to form tetramers.[2] The TRPM family consists of eight different channels, TRPM1–TRPM8.[3]

Unlike the TRPC and TRPV sub-families, TRPM subunits do not contain N-terminal ankyrin repeat motifs but, rather, contain entire functional proteins in their C-termini. TRPM6 and TRPM7, for example, contain functional α-kinase segments, which are a type of serine/threonine-specific protein kinase.

Permeability and activation

The relative permeability of calcium and magnesium varies widely among TRPM channels.

The mechanism of activation also varies greatly among TRPM channels.

Functions

Among the functional responsibilities of the TRPM channels are:

  • regulation of calcium oscillations after T cell activation (TRPM4).[7]
  • sensory transduction in taste cells (TRPM5).
  • cold sensation (TRPM8)
  • regulation of magnesium reabsorption in the kidneys and absorption in the intestines (TRPM6).[8]
  • regulation of cell adhesion (TRPM7).[9]

Genes

References

  1. ^ Kraft R, Harteneck C (2005). "The mammalian melastatin-related transient receptor potential cation channels: an overview". Pflugers Arch. 451 (1): 204–211. doi:10.1007/s00424-005-1428-0. PMID 15895246.
  2. ^ Jiang LH (2007). "Subunit interaction in channel assembly and functional regulation of transient receptor potential melastatin (TRPM) channels". Biochem Soc Trans. 35 (1): 86–8. doi:10.1042/BST0350086. PMID 17233608.
  3. ^ Boesmans W, Owsianik G, Tack J, Voets T, Vanden Berghe P (2011). "TRP channels in neurogastroenterology: opportunities for therapeutic intervention". British Journal of Pharmacology. 162 (1): 18–37. doi:10.1111/j.1476-5381.2010.01009.x. PMC 3012403. PMID 20804496.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002). "LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death". Mol Cell. 9 (1): 163–173. doi:10.1016/S1097-2765(01)00438-5. PMID 11804595.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R (2004). "Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay". Br. J. Pharmacol. 141 (4): 737–745. doi:10.1038/sj.bjp.0705652. PMC 1574235. PMID 14757700.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Nilius B, Owsianik G, Voets T, Peters JA (2007). "Transient receptor potential cation channels in disease". Physiol. Rev. 87 (1): 165–217. doi:10.1152/physrev.00021.2006. PMID 17237345.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet J.-P. (2004). "TRPM4 regulates calcium oscillations after T cell activation". Science. 306 (5700): 1374–1377. doi:10.1126/science.1098845. PMID 15550671.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002). "Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family". Nat. Genet. 31 (2): 166–170. doi:10.1038/ng889. PMID 12032568.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ Su L-T., Agapito MA, Li M, Simonson WTN, Huttenlocher A, Habas R, Yue L, Runnels LW (2006). "TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain". J. Biol. Chem. 281 (16): 11260–11270. doi:10.1074/jbc.M512885200. PMC 3225339. PMID 16436382.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)