Jump to content

HVCN1

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OAbot (talk | contribs) at 13:08, 13 April 2020 (Open access bot: doi added to citation with #oabot.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

HVCN1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesHVCN1, HV1, VSOP, hydrogen voltage gated channel 1
External IDsOMIM: 611227; MGI: 1921346; HomoloGene: 12535; GeneCards: HVCN1; OMA:HVCN1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001040107
NM_001256413
NM_032369

NM_001042489
NM_028752
NM_001359454

RefSeq (protein)

NP_001035196
NP_001243342
NP_115745

NP_001035954
NP_083028
NP_001346383

Location (UCSC)Chr 12: 110.63 – 110.7 MbChr 5: 122.34 – 122.38 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Voltage-gated hydrogen channel 1 is a protein that in humans is encoded by the HVCN1 gene.

Voltage-gated hydrogen channel 1 is a voltage-gated proton channel that has been shown to allow proton transport into phagosomes[5][6] and out of many types of cells including spermatozoa, electrically excitable cells and respiratory epithelial cells.[7] The proton-conducting HVCN1 channel has only transmembrane domains corresponding to the S1-S4 voltage sensing domains (VSD) of voltage-gated potassium channels and voltage-gated sodium channels.[8] Molecular simulation is consistent with a water-filled pore that can function as a "water wire" for allowing hydrogen bonded H+ to cross the membrane.[9][10] However, mutation of Asp112 in human Hv1 results in anion permeation, suggesting that obligatory protonation of Asp produces proton selectivity.[11] Quantum mechanical calculations show that the Asp-Arg interaction can produce proton selective permeation.[12] The HVCN1 protein has been shown to exist as a dimer with two functioning pores.[13][14] Like other VSD channels, HVCN1 channels conduct ions about 1000-fold slower than channels formed by tetrameric S5-S6 central pores.[15]

As a drug target

Small molecule inhibitors of the HVCN1 channel are being developed as chemotherapeutics and anti-inflammatory agents.[16]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000122986Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000064267Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Murphy R, DeCoursey TE (August 2006). "Charge compensation during the phagocyte respiratory burst". Biochim. Biophys. Acta. 1757 (8): 996–1011. doi:10.1016/j.bbabio.2006.01.005. PMID 16483534.
  6. ^ Capasso M, Bhamrah MK, Henley T, Boyd RS, Langlais C, Cain K, Dinsdale D, Pulford K, Khan M, Musset B, Cherny VV, Morgan D, Gascoyne RD, Vigorito E, DeCoursey TE, MacLennan IC, Dyer MJ (March 2010). "HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species". Nat. Immunol. 11 (3): 265–72. doi:10.1038/ni.1843. PMC 3030552. PMID 20139987.
  7. ^ Capasso M, DeCoursey TE, Dyer MJ (January 2011). "pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1". Trends Cell Biol. 21 (1): 20–8. doi:10.1016/j.tcb.2010.09.006. PMC 3014425. PMID 20961760.
  8. ^ Lee SY, Letts JA, MacKinnon R (April 2009). "Functional reconstitution of purified human Hv1 H+ channels". J. Mol. Biol. 387 (5): 1055–60. doi:10.1016/j.jmb.2009.02.034. PMC 2778278. PMID 19233200.
  9. ^ Wood ML, Schow EV, Freites JA, White SH, Tombola F, Tobias DJ (February 2012). "Water wires in atomistic models of the Hv1 proton channel". Biochim. Biophys. Acta. 1818 (2): 286–93. doi:10.1016/j.bbamem.2011.07.045. PMC 3245885. PMID 21843503.
  10. ^ Ramsey IS, Mokrab Y, Carvacho I, Sands ZA, Sansom MS, Clapham DE (July 2010). "An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1". Nat. Struct. Mol. Biol. 17 (7): 869–75. doi:10.1038/nsmb.1826. PMC 4035905. PMID 20543828.
  11. ^ Musset, B; Smith, SM; Rajan, S; Morgan, D; Cherny, VV; Decoursey, TE (23 October 2011). "Aspartate 112 is the selectivity filter of the human voltage-gated proton channel". Nature. 480 (7376): 273–7. doi:10.1038/nature10557. PMC 3237871. PMID 22020278.
  12. ^ Dudev, T; Musset, B; Morgan, D; Cherny, VV; Smith, SM; Mazmanian, K; DeCoursey, TE; Lim, C (8 May 2015). "Selectivity Mechanism of the Voltage-gated Proton Channel, HV1". Scientific Reports. 5: 10320. doi:10.1038/srep10320. PMC 4429351. PMID 25955978.
  13. ^ Gonzalez C, Koch HP, Drum BM, Larsson HP (January 2010). "Strong cooperativity between subunits in voltage-gated proton channels". Nat. Struct. Mol. Biol. 17 (1): 51–6. doi:10.1038/nsmb.1739. PMC 2935852. PMID 20023639.
  14. ^ Tombola F, Ulbrich MH, Kohout SC, Isacoff EY (January 2010). "The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity". Nat. Struct. Mol. Biol. 17 (1): 44–50. doi:10.1038/nsmb.1738. PMC 2925041. PMID 20023640.
  15. ^ DeCoursey TE (November 2008). "Voltage-gated proton channels: what's next?". J. Physiol. 586 (Pt 22): 5305–24. doi:10.1113/jphysiol.2008.161703. PMC 2655391. PMID 18801839.
  16. ^ Hong L, Pathak MM, Kim IH, Ta D, Tombola F (January 2013). "Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains". Neuron. 77 (2): 274–87. doi:10.1016/j.neuron.2012.11.013. PMC 3559007. PMID 23352164.

Further reading