Jump to content

CD28: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Alter: doi-broken-date. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | Category:CS1 maint: DOI inactive as of January 2021 | #UCB_Category 128/2337
added new chapter CD28 family members, added more information about CD28, Structure of CD28 and CD28 as a drug target
Line 5: Line 5:


CD28 is the only [[B7 (protein)|B7]] receptor constitutively expressed on [[naive T cell]]s. Association of the TCR of a [[naive T cell]] with [[Major histocompatibility complex|MHC]]:[[antigen]] complex without CD28:B7 interaction results in a T cell that is [[anergic]].
CD28 is the only [[B7 (protein)|B7]] receptor constitutively expressed on [[naive T cell]]s. Association of the TCR of a [[naive T cell]] with [[Major histocompatibility complex|MHC]]:[[antigen]] complex without CD28:B7 interaction results in a T cell that is [[anergic]].

CD28 is also expressed on 50 % of [[CD8|CD8+]] T cells and more than 90 % [[CD4|CD4+ T cells]] in human. As a homodimer of two chains with Ig domains binds B7 molecules on APCs and it can promotes T cells proliferation and differentiation, stimulates production of growth factors and induces the expression of anti-apoptotic proteins.<ref>{{Citation|last=Abbas|first=Abul K.|title=Preface|date=2001|url=http://dx.doi.org/10.1016/b978-1-4160-3123-9.50003-6|work=Cellular and Molecular Immunology|volume=fifth edition|pages=chapter 6|publisher=Elsevier|isbn=978-1-4160-3123-9|access-date=|last2=Lichtman|first2=Andrew H.|last3=Pillai|first3=Shiv}}</ref> Expression of CD28 was identified on bone marrow stromal cells, plasma cells, neutrophils and eosinophils, but the level of positive CD28 decreases with age.<ref>{{Cite journal|last=Gray Parkin|first=Kirstin|last2=Stephan|first2=Robert P.|last3=Apilado|first3=Ron-Gran|last4=Lill-Elghanian|first4=Deborah A.|last5=Lee|first5=Kelvin P.|last6=Saha|first6=Bhaskar|last7=Witte|first7=Pamela L.|date=2002-09-01|title=Expression of CD28 by Bone Marrow Stromal Cells and Its Involvement in B Lymphopoiesis|url=http://dx.doi.org/10.4049/jimmunol.169.5.2292|journal=The Journal of Immunology|volume=169|issue=5|pages=2292–2302|doi=10.4049/jimmunol.169.5.2292|issn=0022-1767}}</ref><ref>{{Cite journal|last=Venuprasad|first=K.|last2=Parab|first2=Pradeep|last3=Prasad|first3=D. V. R.|last4=Sharma|first4=Satyan|last5=Banerjee|first5=Pinaki P.|last6=Deshpande|first6=Manisha|last7=Mitra|first7=Dipendra K.|last8=Pal|first8=Subrata|last9=Bhadra|first9=Ranjan|last10=Mitra|first10=Debashis|last11=Saha|first11=Bhaskar|date=2001-05|title=Immunobiology of CD28 expression on human neutrophils. I. CD28 regulates neutrophil migration by modulating CXCR-1 expression|url=http://dx.doi.org/10.1002/1521-4141(200105)31:5<1536::aid-immu1536>3.0.co;2-8|journal=European Journal of Immunology|volume=31|issue=5|pages=1536–1543|doi=10.1002/1521-4141(200105)31:5<1536::aid-immu1536>3.0.co;2-8|issn=0014-2980}}</ref> For example after birth, all human cells express CD28 cells. But in adult, 20-30% of CD8 T cells lose the ability of CD28 expression, whereas in the elderly (+80 years) up to 50-60% of CD8 cells lose the ability of CD28 expression.<ref>{{Cite journal|last=FAGNONI|first=F. F.|last2=VESCOVINI|first2=R.|last3=MAZZOLA|first3=M.|last4=BOLOGNA|first4=G.|last5=NIGRO|first5=E.|last6=LAVAGETTO|first6=G.|last7=FRANCESCHI|first7=C.|last8=PASSERI|first8=M.|last9=SANSONI|first9=P.|date=1996-08|title=Expansion of cytotoxic CD8
+
 CD28
T cells in healthy ageing people, including centenarians|url=http://dx.doi.org/10.1046/j.1365-2567.1996.d01-689.x|journal=Immunology|volume=88|issue=4|pages=501–507|doi=10.1046/j.1365-2567.1996.d01-689.x|issn=0019-2805}}</ref>

Effective co-stimulation is essential for T cell activation. In the absence of co-stimulatory signals, the interaction of dendritic and T cells leads to T cell anergy. The importance of the costimulatory pathway is underlined by the fact that antagonists of co-stimulatory molecules disrupt the immune responses both ''in vitro'' and ''in vivo''.<ref>{{Cite book|last=Chapel|first=Helen|url=https://www.worldcat.org/oclc/1031053171|title=Základy klinické imunologie : 6. vydání|date=2018|others=Mansel Haeney, Siraj A. Misbah, Neil Snowden, Vojtěch Thon|isbn=978-80-7553-396-8|location=Praha|oclc=1031053171}}</ref>


==Signaling==
==Signaling==
Line 15: Line 23:


The first structure of CD28 was obtained in 2005 by the T-cell biology group at the [[University of Oxford]].<ref name="pmid15696168">{{cite journal | vauthors = Evans EJ, Esnouf RM, Manso-Sancho R, Gilbert RJ, James JR, Yu C, Fennelly JA, Vowles C, Hanke T, Walse B, Hünig T, Sørensen P, Stuart DI, Davis SJ | title = Crystal structure of a soluble CD28-Fab complex | journal = Nat. Immunol. | volume = 6 | issue = 3 | pages = 271–9 | date = March 2005 | pmid = 15696168 | doi = 10.1038/ni1170 | s2cid = 23630078 }}</ref>
The first structure of CD28 was obtained in 2005 by the T-cell biology group at the [[University of Oxford]].<ref name="pmid15696168">{{cite journal | vauthors = Evans EJ, Esnouf RM, Manso-Sancho R, Gilbert RJ, James JR, Yu C, Fennelly JA, Vowles C, Hanke T, Walse B, Hünig T, Sørensen P, Stuart DI, Davis SJ | title = Crystal structure of a soluble CD28-Fab complex | journal = Nat. Immunol. | volume = 6 | issue = 3 | pages = 271–9 | date = March 2005 | pmid = 15696168 | doi = 10.1038/ni1170 | s2cid = 23630078 }}</ref>

The structure of the CD28 protein contains 220 amino acids, encoded by a gene consisting of four exons. It is a glycosylated, disulfide-linked homodimer of 44 kDa expressed on the cell surface. The structure contains paired domains of the V-set immunoglobulin superfamilies (IgSF). These domains are linked to individual transmembrane domains and cytoplasmic domains that contain critical signaling motifs.<ref>{{Cite journal|last=Carreno|first=Beatriz M.|last2=Collins|first2=Mary|date=2002-04|title=THEB7 FAMILY OFLIGANDS ANDITSRECEPTORS: New Pathways for Costimulation and Inhibition of Immune Responses|url=http://dx.doi.org/10.1146/annurev.immunol.20.091101.091806|journal=Annual Review of Immunology|volume=20|issue=1|pages=29–53|doi=10.1146/annurev.immunol.20.091101.091806|issn=0732-0582}}</ref> As [[CTLA-4|CTLA4]], CD28 share highly similar [[Complementarity-determining region|CDR3]]-analogous loops.<ref>{{Cite web|last=Zhang|first=X.|last2=Schwartz|first2=J.D.|last3=Almo|first3=S.C.|last4=Nathenson|first4=S.G.|date=2003-03-11|title=Crystal structure of the receptor-binding domain of human B7–2: insights into organization and signaling|url=http://dx.doi.org/10.2210/pdb1ncn/pdb|url-status=live|access-date=|website=dx.doi.org}}</ref> In the CD28-CD80 complex, the two CD80 molecules converge such that their membrane proximal domains collide sterically, despite the availability of both ligand binding sites for CD28.<ref>{{Cite journal|last=Evans|first=Edward J|last2=Esnouf|first2=Robert M|last3=Manso-Sancho|first3=Raquel|last4=Gilbert|first4=Robert J C|last5=James|first5=John R|last6=Yu|first6=Chao|last7=Fennelly|first7=Janet A|last8=Vowles|first8=Cheryl|last9=Hanke|first9=Thomas|last10=Walse|first10=Björn|last11=Hünig|first11=Thomas|date=2005-02-06|title=Crystal structure of a soluble CD28-Fab complex|url=http://dx.doi.org/10.1038/ni1170|journal=Nature Immunology|volume=6|issue=3|pages=271–279|doi=10.1038/ni1170|issn=1529-2908}}</ref>

== CD28 family members ==
CD28 belongs into group members of a subfamily of costimulatory molecules that are characterized by an extracellular variable immunoglobulin-like domain. Members of this subfamily also include homologous receptors [[CD278|ICOS]], [[CTLA-4|CTLA4]], [[Programmed cell death protein 1|PD1]], PD1H, and [[BTLA]].<ref>{{Cite journal|last=Chen|first=Lieping|last2=Flies|first2=Dallas B.|date=2013-03-08|title=Molecular mechanisms of T cell co-stimulation and co-inhibition|url=http://dx.doi.org/10.1038/nri3405|journal=Nature Reviews Immunology|volume=13|issue=4|pages=227–242|doi=10.1038/nri3405|issn=1474-1733}}</ref> Nevertheless, only CD28 is expressed constitutively on mouse T cells, whereas ICOS and CTLA4 are induce by T cells receptor stimulation and in response to cytokines such as [[Interleukin 2|IL-2]]. CD28 and CTLA4 are very homologous and compete for the same ligand – [[CD80]] and [[CD86]].<ref>{{Cite journal|last=Linsley|first=P. S.|last2=Clark|first2=E. A.|last3=Ledbetter|first3=J. A.|date=1990-07-01|title=T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1.|url=http://dx.doi.org/10.1073/pnas.87.13.5031|journal=Proceedings of the National Academy of Sciences|volume=87|issue=13|pages=5031–5035|doi=10.1073/pnas.87.13.5031|issn=0027-8424}}</ref> CTLA4 binds CD80 and CD86 always stronger than CD28, which allows CTLA4 to compete with CD28 for ligand and suppress effector T cells responses.<ref>{{Cite journal|last=Engelhardt|first=John J.|last2=Sullivan|first2=Timothy J.|last3=Allison|first3=James P.|date=2006-07-03|title=CTLA-4 Overexpression Inhibits T Cell Responses through a CD28-B7-Dependent Mechanism|url=http://dx.doi.org/10.4049/jimmunol.177.2.1052|journal=The Journal of Immunology|volume=177|issue=2|pages=1052–1061|doi=10.4049/jimmunol.177.2.1052|issn=0022-1767}}</ref> But it was showed that CD28 and CTL4 have opposite effect on the T cells stimulation. CD28 acts as a activator and CTL4 acts as inhibitor.<ref>{{Cite journal|last=Krummel|first=M F|last2=Allison|first2=J P|date=1995-08-01|title=CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation.|url=http://dx.doi.org/10.1084/jem.182.2.459|journal=Journal of Experimental Medicine|volume=182|issue=2|pages=459–465|doi=10.1084/jem.182.2.459|issn=0022-1007}}</ref><ref>{{Cite journal|last=Walunas|first=Theresa L.|last2=Lenschow|first2=Deborah J.|last3=Bakker|first3=Christina Y.|last4=Linsley|first4=Peter S.|last5=Freeman|first5=Gordon J.|last6=Green|first6=Jonathan M.|last7=Thompson|first7=Craig B.|last8=Bluestone|first8=Jeffrey A.|date=1994-08|title=CTLA-4 can function as a negative regulator of T cell activation|url=http://dx.doi.org/10.1016/1074-7613(94)90071-x|journal=Immunity|volume=1|issue=5|pages=405–413|doi=10.1016/1074-7613(94)90071-x|issn=1074-7613}}</ref> ICOS and CD28 are also closely related genes, but they cannot substitute from one another in function. The opposing roles of CD28 and ICOS compared to CTLA4 cause that these receptors act as a rheostat for the immune response through competitive pro- and anti-inflammatory effects.<ref>{{Cite journal|last=Linterman|first=Michelle A.|last2=Rigby|first2=Robert J.|last3=Wong|first3=Raphael|last4=Silva|first4=Diego|last5=Withers|first5=David|last6=Anderson|first6=Graham|last7=Verma|first7=Naresh K.|last8=Brink|first8=Robert|last9=Hutloff|first9=Andreas|last10=Goodnow|first10=Chris C.|last11=Vinuesa|first11=Carola G.|date=2009-02|title=Roquin Differentiates the Specialized Functions of Duplicated T Cell Costimulatory Receptor Genes Cd28 and Icos|url=http://dx.doi.org/10.1016/j.immuni.2008.12.015|journal=Immunity|volume=30|issue=2|pages=228–241|doi=10.1016/j.immuni.2008.12.015|issn=1074-7613}}</ref>


== As a drug target ==
== As a drug target ==


The drug [[TGN1412]], which was produced by the German biotech company TeGenero, and unexpectedly caused [[multiple organ failure]] in trials, is a [[superagonist]] of CD28. Unfortunately, it is often ignored that the same receptors also exist on cells other than [[lymphocyte]]s. CD28 has also been found to stimulate [[eosinophil granulocyte]]s where its ligation with anti-CD28 leads to the release of [[interleukin 2|IL-2]], [[interleukin 4|IL4]], [[interleukin 13|IL-13]] and [[Interferon-gamma|IFN-γ]].<ref>{{cite journal | vauthors = Woerly G, Roger N, Loiseau S, Dombrowicz D, Capron A, Capron M | title = Expression of Cd28 and Cd86 by Human Eosinophils and Role in the Secretion of Type 1 Cytokines (Interleukin 2 and Interferon γ): Inhibition by Immunoglobulin a Complexes | journal = J Exp Med | volume = 190 | issue = 4 | pages = 487–95 | year = 1999 | pmid = 10449520 | pmc = 2195599 | doi = 10.1084/jem.190.4.487 }}</ref><ref>{{cite journal | vauthors = Woerly G, Lacy P, Younes AB, Roger N, Loiseau S, Moqbel R, Capron M | title = Human eosinophils express and release IL-13 following CD28-dependent activation | journal = J Leukoc Biol | volume = 72 | issue = 4 | pages = 769–79 | year = 2002 | pmid = 12377947 | doi=10.1189/jlb.72.4.769| doi-broken-date = 31 May 2021 }}</ref>
The drug [[TGN1412]], which was produced by the German biotech company TeGenero, and unexpectedly caused [[multiple organ failure]] in trials, is a [[superagonist]] of CD28. Unfortunately, it is often ignored that the same receptors also exist on cells other than [[lymphocyte]]s. CD28 has also been found to stimulate [[eosinophil granulocyte]]s where its ligation with anti-CD28 leads to the release of [[interleukin 2|IL-2]], [[interleukin 4|IL4]], [[interleukin 13|IL-13]] and [[Interferon-gamma|IFN-γ]].<ref>{{cite journal | vauthors = Woerly G, Roger N, Loiseau S, Dombrowicz D, Capron A, Capron M | title = Expression of Cd28 and Cd86 by Human Eosinophils and Role in the Secretion of Type 1 Cytokines (Interleukin 2 and Interferon γ): Inhibition by Immunoglobulin a Complexes | journal = J Exp Med | volume = 190 | issue = 4 | pages = 487–95 | year = 1999 | pmid = 10449520 | pmc = 2195599 | doi = 10.1084/jem.190.4.487 }}</ref><ref>{{cite journal | vauthors = Woerly G, Lacy P, Younes AB, Roger N, Loiseau S, Moqbel R, Capron M | title = Human eosinophils express and release IL-13 following CD28-dependent activation | journal = J Leukoc Biol | volume = 72 | issue = 4 | pages = 769–79 | year = 2002 | pmid = 12377947 | doi=10.1189/jlb.72.4.769| doi-broken-date = 31 May 2021 }}</ref>

It is known that CD28 and CTL4 may be critical regulators [[Autoimmune disease|autoimmune diseases]] in mouse model.<ref>{{Cite journal|last=Salomon|first=Benoît|last2=Lenschow|first2=Deborah J|last3=Rhee|first3=Lesley|last4=Ashourian|first4=Neda|last5=Singh|first5=Bhagarith|last6=Sharpe|first6=Arlene|last7=Bluestone|first7=Jeffrey A|date=2000-04|title=B7/CD28 Costimulation Is Essential for the Homeostasis of the CD4+CD25+ Immunoregulatory T Cells that Control Autoimmune Diabetes|url=http://dx.doi.org/10.1016/s1074-7613(00)80195-8|journal=Immunity|volume=12|issue=4|pages=431–440|doi=10.1016/s1074-7613(00)80195-8|issn=1074-7613}}</ref><ref>{{Cite journal|last=Tivol|first=Elizabeth A.|last2=Borriello|first2=Frank|last3=Schweitzer|first3=A.Nicola|last4=Lynch|first4=William P.|last5=Bluestone|first5=Jeffrey A.|last6=Sharpe|first6=Arlene H.|date=1995-11|title=Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4|url=http://dx.doi.org/10.1016/1074-7613(95)90125-6|journal=Immunity|volume=3|issue=5|pages=541–547|doi=10.1016/1074-7613(95)90125-6|issn=1074-7613}}</ref> But there is less data from patients on the role of CD28 in human diseases.

Other potential drugs in pre-clinical development are agonist CD28 aptamers with immunostimulatory properties in a mouse tumor model,<ref>{{Cite journal|last=Pastor|first=Fernando|last2=Soldevilla|first2=Mario M|last3=Villanueva|first3=Helena|last4=Kolonias|first4=Despina|last5=Inoges|first5=Susana|last6=de Cerio|first6=Ascensión L|last7=Kandzia|first7=Romy|last8=Klimyuk|first8=Victor|last9=Gleba|first9=Yuri|last10=Gilboa|first10=Eli|last11=Bendandi|first11=Maurizio|date=2013|title=CD28 Aptamers as Powerful Immune Response Modulators|url=http://dx.doi.org/10.1038/mtna.2013.26|journal=Molecular Therapy - Nucleic Acids|volume=2|pages=e98|doi=10.1038/mtna.2013.26|issn=2162-2531}}</ref> a monoclonal anti-CD28 Fab´ antibody FR104,<ref>{{Cite journal|last=Poirier|first=N.|last2=Mary|first2=C.|last3=Dilek|first3=N.|last4=Hervouet|first4=J.|last5=Minault|first5=D.|last6=Blancho|first6=G.|last7=Vanhove|first7=B.|date=2012-07-03|title=Preclinical Efficacy and Immunological Safety of FR104, an Antagonist Anti-CD28 Monovalent Fab′ Antibody|url=http://dx.doi.org/10.1111/j.1600-6143.2012.04164.x|journal=American Journal of Transplantation|volume=12|issue=10|pages=2630–2640|doi=10.1111/j.1600-6143.2012.04164.x|issn=1600-6135}}</ref> or an octapeptide AB103, which prevents CD28 homodimerization.<ref>{{Cite journal|last=Mirzoeva|first=Salida|last2=Paunesku|first2=Tatjana|last3=Wanzer|first3=M. Beau|last4=Shirvan|first4=Anat|last5=Kaempfer|first5=Raymond|last6=Woloschak|first6=Gayle E.|last7=Small|first7=William|date=2014-07-23|title=Single Administration of p2TA (AB103), a CD28 Antagonist Peptide, Prevents Inflammatory and Thrombotic Reactions and Protects against Gastrointestinal Injury in Total-Body Irradiated Mice|url=http://dx.doi.org/10.1371/journal.pone.0101161|journal=PLoS ONE|volume=9|issue=7|pages=e101161|doi=10.1371/journal.pone.0101161|issn=1932-6203}}</ref>


== Interactions ==
== Interactions ==
Line 34: Line 51:
== Further reading ==
== Further reading ==
{{refbegin|35em}}
{{refbegin|35em}}
* {{cite journal | vauthors = Linsley PS, Ledbetter JA | title = The role of the CD28 receptor during T cell responses to antigen | journal = Annu. Rev. Immunol. | volume = 11 | pages = 191–212 | year = 1993 | pmid = 8386518 | doi = 10.1146/annurev.iy.11.040193.001203 }}
* {{cite journal|last=Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A., & Bluestone, J. A.|vauthors=|title=CD28 costimulation: from mechanism to therapy.|journal=Immunity|volume=44|pages=973-988|year=2016|pmid=|doi=}}
* {{cite journal | vauthors = Lenschow DJ, Walunas TL, Bluestone JA | title = CD28/B7 system of T cell costimulation | journal = Annu. Rev. Immunol. | volume = 14 | pages = 233–58 | year = 1996 | pmid = 8717514 | doi = 10.1146/annurev.immunol.14.1.233 }}
* {{cite journal|vauthors=Lenschow DJ, Walunas TL, Bluestone JA|title=CD28/B7 system of T cell costimulation|journal=Annu. Rev. Immunol.|volume=14|pages=233–58|year=1996|pmid=8717514|doi=10.1146/annurev.immunol.14.1.233}}
* {{cite journal | vauthors = Greenfield EA, Nguyen KA, Kuchroo VK | title = CD28/B7 costimulation: a review | journal = Crit. Rev. Immunol. | volume = 18 | issue = 5 | pages = 389–418 | year = 1998 | pmid = 9784967 | doi = 10.1615/critrevimmunol.v18.i5.10}}
* {{cite journal|vauthors=Greenfield EA, Nguyen KA, Kuchroo VK|title=CD28/B7 costimulation: a review|journal=Crit. Rev. Immunol.|volume=18|issue=5|pages=389–418|year=1998|pmid=9784967|doi=10.1615/critrevimmunol.v18.i5.10}}
* {{cite book | vauthors = Chang TT, Kuchroo VK, Sharpe AH | title = Signal Transduction Pathways in Autoimmunity | chapter = Role of the B7-CD28/CTLA-4 pathway in autoimmune disease | journal = Curr. Dir. Autoimmun. | volume = 5 | pages = 113–30 | year = 2002 | pmid = 11826754 | doi = 10.1159/000060550 | isbn = 978-3-8055-7308-5 | series = Current Directions in Autoimmunity }}
* {{cite book|vauthors=Chang TT, Kuchroo VK, Sharpe AH|title=Signal Transduction Pathways in Autoimmunity|chapter=Role of the B7-CD28/CTLA-4 pathway in autoimmune disease|journal=Curr. Dir. Autoimmun.|volume=5|pages=113–30|year=2002|pmid=11826754|doi=10.1159/000060550|isbn=978-3-8055-7308-5|series=Current Directions in Autoimmunity}}
* {{cite journal | vauthors = Bour-Jordan H, Blueston JA | title = CD28 function: a balance of costimulatory and regulatory signals | journal = J. Clin. Immunol. | volume = 22 | issue = 1 | pages = 1–7 | year = 2002 | pmid = 11958588 | doi = 10.1023/A:1014256417651 | s2cid = 38060684 }}
* {{cite journal|vauthors=Bour-Jordan H, Blueston JA|title=CD28 function: a balance of costimulatory and regulatory signals|journal=J. Clin. Immunol.|volume=22|issue=1|pages=1–7|year=2002|pmid=11958588|doi=10.1023/A:1014256417651|s2cid=38060684}}
* {{cite journal | vauthors = Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M | title = HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication | journal = J. Biosci. | volume = 28 | issue = 3 | pages = 323–35 | year = 2004 | pmid = 12734410 | doi = 10.1007/BF02970151 | s2cid = 33749514 }}
* {{cite journal|vauthors=Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M|title=HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication|journal=J. Biosci.|volume=28|issue=3|pages=323–35|year=2004|pmid=12734410|doi=10.1007/BF02970151|s2cid=33749514}}
* {{cite journal | vauthors = Bénichou S, Benmerah A | title = [The HIV nef and the Kaposi-sarcoma-associated virus K3/K5 proteins: "parasites"of the endocytosis pathway] | journal = Med Sci (Paris) | volume = 19 | issue = 1 | pages = 100–6 | year = 2003 | pmid = 12836198 | doi = 10.1051/medsci/2003191100 }}
* {{cite journal|vauthors=Bénichou S, Benmerah A|title=[The HIV nef and the Kaposi-sarcoma-associated virus K3/K5 proteins: "parasites"of the endocytosis pathway]|journal=Med Sci (Paris)|volume=19|issue=1|pages=100–6|year=2003|pmid=12836198|doi=10.1051/medsci/2003191100}}
* {{cite journal | vauthors = Tolstrup M, Ostergaard L, Laursen AL, Pedersen SF, Duch M | title = HIV/SIV escape from immune surveillance: focus on Nef | journal = Curr. HIV Res. | volume = 2 | issue = 2 | pages = 141–51 | year = 2004 | pmid = 15078178 | doi = 10.2174/1570162043484924 }}
* {{cite journal|vauthors=Tolstrup M, Ostergaard L, Laursen AL, Pedersen SF, Duch M|title=HIV/SIV escape from immune surveillance: focus on Nef|journal=Curr. HIV Res.|volume=2|issue=2|pages=141–51|year=2004|pmid=15078178|doi=10.2174/1570162043484924}}
* {{cite journal | vauthors = Anderson JL, Hope TJ | title = HIV accessory proteins and surviving the host cell | journal = Current HIV/AIDS Reports | volume = 1 | issue = 1 | pages = 47–53 | year = 2005 | pmid = 16091223 | doi = 10.1007/s11904-004-0007-x | s2cid = 34731265 }}
* {{cite journal|vauthors=Anderson JL, Hope TJ|title=HIV accessory proteins and surviving the host cell|journal=Current HIV/AIDS Reports|volume=1|issue=1|pages=47–53|year=2005|pmid=16091223|doi=10.1007/s11904-004-0007-x|s2cid=34731265}}
* {{cite journal | vauthors = Li L, Li HS, Pauza CD, Bukrinsky M, Zhao RY | title = Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions | journal = Cell Res. | volume = 15 | issue = 11–12 | pages = 923–34 | year = 2006 | pmid = 16354571 | doi = 10.1038/sj.cr.7290370 | s2cid = 24253878 }}
* {{cite journal|vauthors=Li L, Li HS, Pauza CD, Bukrinsky M, Zhao RY|title=Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions|journal=Cell Res.|volume=15|issue=11–12|pages=923–34|year=2006|pmid=16354571|doi=10.1038/sj.cr.7290370|s2cid=24253878}}
* {{cite journal | vauthors = Stove V, Verhasselt B | title = Modelling thymic HIV-1 Nef effects | journal = Curr. HIV Res. | volume = 4 | issue = 1 | pages = 57–64 | year = 2006 | pmid = 16454711 | doi = 10.2174/157016206775197583 }}
* {{cite journal|vauthors=Stove V, Verhasselt B|title=Modelling thymic HIV-1 Nef effects|journal=Curr. HIV Res.|volume=4|issue=1|pages=57–64|year=2006|pmid=16454711|doi=10.2174/157016206775197583}}
{{refend}}
{{refend}}



Revision as of 12:15, 2 June 2021

CD28
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCD28, Tp44, CD28 molecule
External IDsOMIM: 186760; MGI: 88327; HomoloGene: 4473; GeneCards: CD28; OMA:CD28 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001243077
NM_001243078
NM_006139

NM_007642

RefSeq (protein)

NP_001230006
NP_001230007
NP_006130

NP_031668

Location (UCSC)Chr 2: 203.71 – 203.74 MbChr 1: 60.76 – 60.81 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

CD28 (Cluster of Differentiation 28) is one of the proteins expressed on T cells that provide co-stimulatory signals required for T cell activation and survival. T cell stimulation through CD28 in addition to the T-cell receptor (TCR) can provide a potent signal for the production of various interleukins (IL-6 in particular).

CD28 is the receptor for CD80 (B7.1) and CD86 (B7.2) proteins. When activated by Toll-like receptor ligands, the CD80 expression is upregulated in antigen-presenting cells (APCs). The CD86 expression on antigen-presenting cells is constitutive (expression is independent of environmental factors).

CD28 is the only B7 receptor constitutively expressed on naive T cells. Association of the TCR of a naive T cell with MHC:antigen complex without CD28:B7 interaction results in a T cell that is anergic.

CD28 is also expressed on 50 % of CD8+ T cells and more than 90 % CD4+ T cells in human. As a homodimer of two chains with Ig domains binds B7 molecules on APCs and it can promotes T cells proliferation and differentiation, stimulates production of growth factors and induces the expression of anti-apoptotic proteins.[5] Expression of CD28 was identified on bone marrow stromal cells, plasma cells, neutrophils and eosinophils, but the level of positive CD28 decreases with age.[6][7] For example after birth, all human cells express CD28 cells. But in adult, 20-30% of CD8 T cells lose the ability of CD28 expression, whereas in the elderly (+80 years) up to 50-60% of CD8 cells lose the ability of CD28 expression.[8]

Effective co-stimulation is essential for T cell activation. In the absence of co-stimulatory signals, the interaction of dendritic and T cells leads to T cell anergy. The importance of the costimulatory pathway is underlined by the fact that antagonists of co-stimulatory molecules disrupt the immune responses both in vitro and in vivo.[9]

Signaling

CD28 possesses an intracellular domain with several residues that are critical for its effective signaling. The YMNM motif beginning at tyrosine 170 in particular is critical for the recruitment of SH2-domain containing proteins, especially PI3K,[10] Grb2[11] and Gads. The Y170 residue is important for the induction of Bcl-xL via mTOR and enhancement of IL-2 transcription via PKCθ, but has no effect on proliferation and results a slight reduction in IL-2 production. The N172 residue (as part of the YMNM) is important for the binding of Grb2 and Gads and seems to be able to induce IL-2 mRNA stability but not NF-κB translocation. The induction of NF-κB seems to be much more dependent on the binding of Gads to both the YMNM and the two proline-rich motifs within the molecule. However, mutation of the final amino acid of the motif, M173, which is unable to bind PI3K but is able to bind Grb2 and Gads, gives little NF-κB or IL-2, suggesting that those Grb2 and Gads are unable to compensate for the loss of PI3K. IL-2 transcription appears to have two stages; a Y170-dependent, PI3K-dependent initial phase which allows transcription and a PI3K-independent second phase which is dependent on formation of an immune synapse, which results in enhancement of IL-2 mRNA stability. Both are required for full production of IL-2.

CD28 also contains two proline-rich motifs that are able to bind SH3-containing proteins. Itk and Tec are able to bind to the N-terminal of these two motifs which immediately succeeds the Y170 YMNM; Lck binds the C-terminal. Both Itk and Lck are able to phosphorylate the tyrosine residues which then allow binding of SH2 containing proteins to CD28. Binding of Tec to CD28 enhances IL-2 production, dependent on binding of its SH3 and PH domains to CD28 and PIP3 respectively. The C-terminal proline-rich motif in CD28 is important for bringing Lck and lipid rafts into the immune synapse via filamin-A. Mutation of the two prolines within the C-terminal motif results in reduced proliferation and IL-2 production but normal induction of Bcl-xL. Phosphorylation of a tyrosine within the PYAP motif (Y191 in the mature human CD28) forms a high affinity-binding site for the SH2 domain of the src kinase Lck which in turn binds to the serine kinase PKC-θ.[12]

Structure

The first structure of CD28 was obtained in 2005 by the T-cell biology group at the University of Oxford.[13]

The structure of the CD28 protein contains 220 amino acids, encoded by a gene consisting of four exons. It is a glycosylated, disulfide-linked homodimer of 44 kDa expressed on the cell surface. The structure contains paired domains of the V-set immunoglobulin superfamilies (IgSF). These domains are linked to individual transmembrane domains and cytoplasmic domains that contain critical signaling motifs.[14] As CTLA4, CD28 share highly similar CDR3-analogous loops.[15] In the CD28-CD80 complex, the two CD80 molecules converge such that their membrane proximal domains collide sterically, despite the availability of both ligand binding sites for CD28.[16]

CD28 family members

CD28 belongs into group members of a subfamily of costimulatory molecules that are characterized by an extracellular variable immunoglobulin-like domain. Members of this subfamily also include homologous receptors ICOS, CTLA4, PD1, PD1H, and BTLA.[17] Nevertheless, only CD28 is expressed constitutively on mouse T cells, whereas ICOS and CTLA4 are induce by T cells receptor stimulation and in response to cytokines such as IL-2. CD28 and CTLA4 are very homologous and compete for the same ligand – CD80 and CD86.[18] CTLA4 binds CD80 and CD86 always stronger than CD28, which allows CTLA4 to compete with CD28 for ligand and suppress effector T cells responses.[19] But it was showed that CD28 and CTL4 have opposite effect on the T cells stimulation. CD28 acts as a activator and CTL4 acts as inhibitor.[20][21] ICOS and CD28 are also closely related genes, but they cannot substitute from one another in function. The opposing roles of CD28 and ICOS compared to CTLA4 cause that these receptors act as a rheostat for the immune response through competitive pro- and anti-inflammatory effects.[22]

As a drug target

The drug TGN1412, which was produced by the German biotech company TeGenero, and unexpectedly caused multiple organ failure in trials, is a superagonist of CD28. Unfortunately, it is often ignored that the same receptors also exist on cells other than lymphocytes. CD28 has also been found to stimulate eosinophil granulocytes where its ligation with anti-CD28 leads to the release of IL-2, IL4, IL-13 and IFN-γ.[23][24]

It is known that CD28 and CTL4 may be critical regulators autoimmune diseases in mouse model.[25][26] But there is less data from patients on the role of CD28 in human diseases.

Other potential drugs in pre-clinical development are agonist CD28 aptamers with immunostimulatory properties in a mouse tumor model,[27] a monoclonal anti-CD28 Fab´ antibody FR104,[28] or an octapeptide AB103, which prevents CD28 homodimerization.[29]

Interactions

CD28 has been shown to interact with:

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000178562Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000026012Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Abbas, Abul K.; Lichtman, Andrew H.; Pillai, Shiv (2001), "Preface", Cellular and Molecular Immunology, vol. fifth edition, Elsevier, pp. chapter 6, ISBN 978-1-4160-3123-9
  6. ^ Gray Parkin, Kirstin; Stephan, Robert P.; Apilado, Ron-Gran; Lill-Elghanian, Deborah A.; Lee, Kelvin P.; Saha, Bhaskar; Witte, Pamela L. (2002-09-01). "Expression of CD28 by Bone Marrow Stromal Cells and Its Involvement in B Lymphopoiesis". The Journal of Immunology. 169 (5): 2292–2302. doi:10.4049/jimmunol.169.5.2292. ISSN 0022-1767.
  7. ^ Venuprasad, K.; Parab, Pradeep; Prasad, D. V. R.; Sharma, Satyan; Banerjee, Pinaki P.; Deshpande, Manisha; Mitra, Dipendra K.; Pal, Subrata; Bhadra, Ranjan; Mitra, Debashis; Saha, Bhaskar (2001-05). <1536::aid-immu1536>3.0.co;2-8 "Immunobiology of CD28 expression on human neutrophils. I. CD28 regulates neutrophil migration by modulating CXCR-1 expression". European Journal of Immunology. 31 (5): 1536–1543. doi:10.1002/1521-4141(200105)31:5<1536::aid-immu1536>3.0.co;2-8. ISSN 0014-2980. {{cite journal}}: Check date values in: |date= (help)
  8. ^ FAGNONI, F. F.; VESCOVINI, R.; MAZZOLA, M.; BOLOGNA, G.; NIGRO, E.; LAVAGETTO, G.; FRANCESCHI, C.; PASSERI, M.; SANSONI, P. (1996-08). "Expansion of cytotoxic CD8 +  CD28 − T cells in healthy ageing people, including centenarians". Immunology. 88 (4): 501–507. doi:10.1046/j.1365-2567.1996.d01-689.x. ISSN 0019-2805. {{cite journal}}: Check date values in: |date= (help); line feed character in |title= at position 27 (help)
  9. ^ Chapel, Helen (2018). Základy klinické imunologie : 6. vydání. Mansel Haeney, Siraj A. Misbah, Neil Snowden, Vojtěch Thon. Praha. ISBN 978-80-7553-396-8. OCLC 1031053171.{{cite book}}: CS1 maint: location missing publisher (link)
  10. ^ Prasad KV, Cai YC, Raab M, Duckworth B, Cantley L, Shoelson SE, Rudd CE (Mar 1994). "T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif". Proceedings of the National Academy of Sciences of the United States of America. 91 (7): 2834–8. Bibcode:1994PNAS...91.2834P. doi:10.1073/pnas.91.7.2834. PMC 43465. PMID 8146197.
  11. ^ Schneider H, Cai YC, Prasad KV, Shoelson SE, Rudd CE (Apr 1995). "T cell antigen CD28 binds to the GRB-2/SOS complex, regulators of p21ras". European Journal of Immunology. 25 (4): 1044–50. doi:10.1002/eji.1830250428. PMID 7737275. S2CID 23540587.
  12. ^ Kong KF, Yokosuka T, Canonigo-Balancio AJ, Isakov N, Saito T, Altman A (Nov 2011). "A motif in the V3 domain of the kinase PKC-θ determines its localization in the immunological synapse and functions in T cells via association with CD28". Nature Immunology. 12 (11): 1105–12. doi:10.1038/ni.2120. PMC 3197934. PMID 21964608.
  13. ^ Evans EJ, Esnouf RM, Manso-Sancho R, Gilbert RJ, James JR, Yu C, Fennelly JA, Vowles C, Hanke T, Walse B, Hünig T, Sørensen P, Stuart DI, Davis SJ (March 2005). "Crystal structure of a soluble CD28-Fab complex". Nat. Immunol. 6 (3): 271–9. doi:10.1038/ni1170. PMID 15696168. S2CID 23630078.
  14. ^ Carreno, Beatriz M.; Collins, Mary (2002-04). "THEB7 FAMILY OFLIGANDS ANDITSRECEPTORS: New Pathways for Costimulation and Inhibition of Immune Responses". Annual Review of Immunology. 20 (1): 29–53. doi:10.1146/annurev.immunol.20.091101.091806. ISSN 0732-0582. {{cite journal}}: Check date values in: |date= (help)
  15. ^ Zhang, X.; Schwartz, J.D.; Almo, S.C.; Nathenson, S.G. (2003-03-11). "Crystal structure of the receptor-binding domain of human B7–2: insights into organization and signaling". dx.doi.org.{{cite web}}: CS1 maint: url-status (link)
  16. ^ Evans, Edward J; Esnouf, Robert M; Manso-Sancho, Raquel; Gilbert, Robert J C; James, John R; Yu, Chao; Fennelly, Janet A; Vowles, Cheryl; Hanke, Thomas; Walse, Björn; Hünig, Thomas (2005-02-06). "Crystal structure of a soluble CD28-Fab complex". Nature Immunology. 6 (3): 271–279. doi:10.1038/ni1170. ISSN 1529-2908.
  17. ^ Chen, Lieping; Flies, Dallas B. (2013-03-08). "Molecular mechanisms of T cell co-stimulation and co-inhibition". Nature Reviews Immunology. 13 (4): 227–242. doi:10.1038/nri3405. ISSN 1474-1733.
  18. ^ Linsley, P. S.; Clark, E. A.; Ledbetter, J. A. (1990-07-01). "T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1". Proceedings of the National Academy of Sciences. 87 (13): 5031–5035. doi:10.1073/pnas.87.13.5031. ISSN 0027-8424.
  19. ^ Engelhardt, John J.; Sullivan, Timothy J.; Allison, James P. (2006-07-03). "CTLA-4 Overexpression Inhibits T Cell Responses through a CD28-B7-Dependent Mechanism". The Journal of Immunology. 177 (2): 1052–1061. doi:10.4049/jimmunol.177.2.1052. ISSN 0022-1767.
  20. ^ Krummel, M F; Allison, J P (1995-08-01). "CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation". Journal of Experimental Medicine. 182 (2): 459–465. doi:10.1084/jem.182.2.459. ISSN 0022-1007.
  21. ^ Walunas, Theresa L.; Lenschow, Deborah J.; Bakker, Christina Y.; Linsley, Peter S.; Freeman, Gordon J.; Green, Jonathan M.; Thompson, Craig B.; Bluestone, Jeffrey A. (1994-08). "CTLA-4 can function as a negative regulator of T cell activation". Immunity. 1 (5): 405–413. doi:10.1016/1074-7613(94)90071-x. ISSN 1074-7613. {{cite journal}}: Check date values in: |date= (help)
  22. ^ Linterman, Michelle A.; Rigby, Robert J.; Wong, Raphael; Silva, Diego; Withers, David; Anderson, Graham; Verma, Naresh K.; Brink, Robert; Hutloff, Andreas; Goodnow, Chris C.; Vinuesa, Carola G. (2009-02). "Roquin Differentiates the Specialized Functions of Duplicated T Cell Costimulatory Receptor Genes Cd28 and Icos". Immunity. 30 (2): 228–241. doi:10.1016/j.immuni.2008.12.015. ISSN 1074-7613. {{cite journal}}: Check date values in: |date= (help)
  23. ^ Woerly G, Roger N, Loiseau S, Dombrowicz D, Capron A, Capron M (1999). "Expression of Cd28 and Cd86 by Human Eosinophils and Role in the Secretion of Type 1 Cytokines (Interleukin 2 and Interferon γ): Inhibition by Immunoglobulin a Complexes". J Exp Med. 190 (4): 487–95. doi:10.1084/jem.190.4.487. PMC 2195599. PMID 10449520.
  24. ^ Woerly G, Lacy P, Younes AB, Roger N, Loiseau S, Moqbel R, Capron M (2002). "Human eosinophils express and release IL-13 following CD28-dependent activation". J Leukoc Biol. 72 (4): 769–79. doi:10.1189/jlb.72.4.769 (inactive 31 May 2021). PMID 12377947.{{cite journal}}: CS1 maint: DOI inactive as of May 2021 (link)
  25. ^ Salomon, Benoît; Lenschow, Deborah J; Rhee, Lesley; Ashourian, Neda; Singh, Bhagarith; Sharpe, Arlene; Bluestone, Jeffrey A (2000-04). "B7/CD28 Costimulation Is Essential for the Homeostasis of the CD4+CD25+ Immunoregulatory T Cells that Control Autoimmune Diabetes". Immunity. 12 (4): 431–440. doi:10.1016/s1074-7613(00)80195-8. ISSN 1074-7613. {{cite journal}}: Check date values in: |date= (help)
  26. ^ Tivol, Elizabeth A.; Borriello, Frank; Schweitzer, A.Nicola; Lynch, William P.; Bluestone, Jeffrey A.; Sharpe, Arlene H. (1995-11). "Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4". Immunity. 3 (5): 541–547. doi:10.1016/1074-7613(95)90125-6. ISSN 1074-7613. {{cite journal}}: Check date values in: |date= (help)
  27. ^ Pastor, Fernando; Soldevilla, Mario M; Villanueva, Helena; Kolonias, Despina; Inoges, Susana; de Cerio, Ascensión L; Kandzia, Romy; Klimyuk, Victor; Gleba, Yuri; Gilboa, Eli; Bendandi, Maurizio (2013). "CD28 Aptamers as Powerful Immune Response Modulators". Molecular Therapy - Nucleic Acids. 2: e98. doi:10.1038/mtna.2013.26. ISSN 2162-2531.
  28. ^ Poirier, N.; Mary, C.; Dilek, N.; Hervouet, J.; Minault, D.; Blancho, G.; Vanhove, B. (2012-07-03). "Preclinical Efficacy and Immunological Safety of FR104, an Antagonist Anti-CD28 Monovalent Fab′ Antibody". American Journal of Transplantation. 12 (10): 2630–2640. doi:10.1111/j.1600-6143.2012.04164.x. ISSN 1600-6135.
  29. ^ Mirzoeva, Salida; Paunesku, Tatjana; Wanzer, M. Beau; Shirvan, Anat; Kaempfer, Raymond; Woloschak, Gayle E.; Small, William (2014-07-23). "Single Administration of p2TA (AB103), a CD28 Antagonist Peptide, Prevents Inflammatory and Thrombotic Reactions and Protects against Gastrointestinal Injury in Total-Body Irradiated Mice". PLoS ONE. 9 (7): e101161. doi:10.1371/journal.pone.0101161. ISSN 1932-6203.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  30. ^ Ellis JH, Ashman C, Burden MN, Kilpatrick KE, Morse MA, Hamblin PA (June 2000). "GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28". J. Immunol. 164 (11): 5805–14. doi:10.4049/jimmunol.164.11.5805. PMID 10820259. S2CID 25739159.
  31. ^ Okkenhaug K, Rottapel R (August 1998). "Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction". J. Biol. Chem. 273 (33): 21194–202. doi:10.1074/jbc.273.33.21194. PMID 9694876. S2CID 39280280.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  32. ^ Nunès JA, Truneh A, Olive D, Cantrell DA (January 1996). "Signal transduction by CD28 costimulatory receptor on T cells. B7-1 and B7-2 regulation of tyrosine kinase adaptor molecules". J. Biol. Chem. 271 (3): 1591–8. doi:10.1074/jbc.271.3.1591. PMID 8576157. S2CID 37740924.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  33. ^ Pagès F, Ragueneau M, Klasen S, Battifora M, Couez D, Sweet R, Truneh A, Ward SG, Olive D (April 1996). "Two distinct intracytoplasmic regions of the T-cell adhesion molecule CD28 participate in phosphatidylinositol 3-kinase association". J. Biol. Chem. 271 (16): 9403–9. doi:10.1074/jbc.271.16.9403. PMID 8621607. S2CID 12566111.{{cite journal}}: CS1 maint: unflagged free DOI (link)

Further reading