Protein kinase domain
Protein kinase domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Pkinase | ||||||||
Pfam | PF00069 | ||||||||
InterPro | IPR000719 | ||||||||
SMART | TyrKc | ||||||||
PROSITE | PDOC00100 | ||||||||
SCOP2 | 1apm / SCOPe / SUPFAM | ||||||||
OPM superfamily | 417 | ||||||||
OPM protein | 2w5a | ||||||||
CDD | cd00180 | ||||||||
|
The protein kinase domain is a structurally conserved protein domain containing the catalytic function of protein kinases.[2][3][4] Protein kinases are a group of enzymes that move a phosphate group onto proteins, in a process called phosphorylation. This functions as an on/off switch for many cellular processes, including metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. They also function in embryonic development, physiological responses, and in the nervous and immune system. Abnormal phosphorylation causes many human diseases, including cancer, and drugs that affect phosphorylation can treat those diseases.[5]
Protein kinases possess a catalytic subunit which transfers the gamma phosphate from nucleoside triphosphates (often ATP) to one or more amino acid residues in a protein substrate side chain, resulting in a conformational change affecting protein function. These enzymes fall into two broad classes, characterised with respect to substrate specificity: serine/threonine specific and tyrosine specific.[6]
Function
Protein kinase function has been evolutionarily conserved from Escherichia coli to Homo sapiens. Protein kinases play a role in a multitude of cellular processes, including division, proliferation, apoptosis, and differentiation.[7] Phosphorylation usually results in a functional change of the target protein by changing enzyme activity, cellular location, or association with other proteins.
Structure
The catalytic subunits of protein kinases are highly conserved, and several structures have been solved,[8] leading to large screens to develop kinase-specific inhibitors for the treatments of a number of diseases.[9]
Eukaryotic protein kinases[2][3][10][11] are enzymes that belong to a very extensive family of proteins which share a conserved catalytic core common with both serine/threonine and tyrosine protein kinases. There are a number of conserved regions in the catalytic domain of protein kinases. In the N-terminal extremity of the catalytic domain there is a glycine-rich stretch of residues in the vicinity of a lysine residue, which has been shown to be involved in ATP binding. In the central part of the catalytic domain there is a conserved aspartic acid residue which is important for the catalytic activity of the enzyme.[12]
Examples
The following is a list of human proteins containing the protein kinase domain:[13]
AAK1; ABL1; ABL2; ACVR1; ACVR1B; ACVR1C; ACVR2A; ACVR2B; ACVRL1; ADCK1; ADCK2; ADCK3; ADCK4; ADCK5; ADRBK1; ADRBK2; AKT1; AKT2; AKT3; ALPK1; ALPK2; ALPK3; STRADB; CDK15; AMHR2; ANKK1; ARAF; ATM; ATR; AURKA; AURKB; AURKC; AXL; BCKDK; BLK; BMP2K; BMPR1A; BMPR1B; BMPR2; BMX; BRAF; BRSK1; BRSK2; BTK; BUB1; C21orf7; CALM1; CALM2; CALM3; CAMK1; CAMK1D; CAMK1G; CAMK2A; CAMK2B; CAMK2D; CAMK2G; CAMK4; CAMKK1; CAMKK2; CAMKV; CASK; CDK20; CDK1; CDK11B; CDK11A; CDK13; CDK19; CDC42BPA; CDC42BPB; CDC42BPG; CDC7; CDK10; CDK2; CDK3; CDK4; CDK5; CDK6; CDK7; CDK8; CDK9; CDK12; CDK14; CDK16; CDK17; CDK18; CDKL1; CDKL2; CDKL3; CDKL4; CDKL5; CHEK1; CHEK2; CHUK; CIT; CKB; CKM; CLK1; CLK2; CLK3; CLK4; CSF1R; CSK; CSNK1A1; CSNK1A1L; CSNK1D; CSNK1E; CSNK1G1; CSNK1G2; CSNK1G3; CSNK2A1; CSNK2A2; DAPK1; DAPK2; DAPK3; DCLK1; DCLK2; DCLK3; DDR1; DDR2; DMPK; DYRK1A; DYRK1B; DYRK2; DYRK3; DYRK4; EGFR; EIF2AK1; EIF2AK2; EIF2AK3; EIF2AK4; ELK1; EPHA1; EPHA2; EPHA3; EPHA4; EPHA5; EPHA6; EPHA7; EPHA8; EPHB1; EPHB2; EPHB3; EPHB4; ERBB2; ERBB3; ERBB4; ERN1; ERN2; FER; FES; FGFR1; FGFR2; FGFR3; FGFR4; FGR; FLT1; FLT3; FLT4; FYN; GAK; GRK1; GRK4; GRK5; GRK6; GRK7; GSK3A; GSK3B; GUCY2C; GUCY2D; GUCY2E; GUCY2F; HCK; HIPK1; HIPK2; HIPK3; HIPK4; HUNK; ICK; IGF1R; IGF2R; IKBKB; IKBKE; ILK; INSR; IRAK1; IRAK2; IRAK3; IRAK4; ITK; JAK1; JAK2; JAK3; KALRN; KDR; SIK3; KSR2; LATS1; LATS2; LIMK1; LCK; LIMK2; LRRK1; LRRK2; LYN; MAK; MAP2K1; MAP2K2; MAP2K3; MAP2K4; MAP2K5; MAP2K6; MAP2K7; MAP3K1; MAP3K10; MAP3K11; MAP3K12; MAP3K13; MAP3K14; MAP3K15; MAP3K2; MAP3K3; MAP3K4; MAP3K5; MAP3K6; MAP3K7; MAP3K8; MAP3K9; MAP4K1; MAP4K2; MAP4K3; MAP4K4; MAP4K5; MAPK1; MAPK10; MAPK12; MAPK13; MAPK14; MAPK15; MAPK3; MAPK4; MAPK6; MAPK7; MAPK8; MAPK9; MAPKAPK2; MAPKAPK3; MAPKAPK5; MARK1; MARK2; MARK3; MARK4; MAST1; MAST2; MAST3; MAST4; MASTL; MELK; MERTK; MET; MINK1; MKNK1; MKNK2; MLKL; MOS; MST1R; MST4; MTOR; MYLK; MYLK2; MYLK3; MYLK4; NEK1; NEK10; NEK11; NEK2; NEK3; NEK4; NEK5; LOC100506859; NEK6; NEK7; NEK8; NEK9; MGC42105; NLK; NRK; NTRK1; NTRK2; NTRK3; NUAK1; NUAK2; OBSCN; OXSR1; PAK1; PAK2; PAK3; PAK4; PAK6; PAK7; PASK; PBK; PDGFRA; PDGFRB; PDIK1L; PDPK1; PHKA1; PHKB; PHKG1; PHKG2; PIK3R4; PIM1; PIM2; PIM3; PINK1; PKMYT1; PKN1; PKN2; PKN3; PLK1; PLK2; PLK3; PLK4; PNCK; PRKAA1; PRKAA2; PRKACA; PRKACB; PRKACG; PRKCA; PRKCB; PRKCD; PRKCE; PRKCG; PRKCH; PRKCI; PRKCQ; PRKCZ; PRKD1; PRKD2; PRKD3; PRKG1; PRKG2; PRKX; LOC389906; PRKY; PRPF4B; PSKH1; PSKH2; PTK2; PTK2B; RAF1; RAGE; RET; RIP3; RIPK1; RIPK2; RIPK3; RIPK4; ROCK1; ROCK2; ROR1; ROR2; ROS1; RPS6KA1; RPS6KA2; RPS6KA3; RPS6KA4; RPS6KA5; RPS6KA6; RPS6KB1; RPS6KB2; RPS6KC1; RPS6KL1; RYK; SCYL1; SCYL2; SCYL3; SGK1; LOC100130827; SGK196; SGK2; SGK3; SGK494; SIK1; SIK2; SLK; SNRK; SPEG; SRC; SRPK1; SRPK2; SRPK3; STK10; STK11; STK16; STK17A; STK17B; STK19; STK24; STK25; STK3; STK31; STK32A; STK32B; STK32C; STK33; STK35; STK36; STK38; STK38L; STK39; STK4; STK40; SYK; TAOK1; TAOK2; TAOK3; TBCK; TBK1; TEC; TESK1; TESK2; TGFBR1; TGFBR2; TIE1; TIE2; TLK1; TLK2; TNIK; TNK1; TNK2; TSSK1B; TSSK2; TSSK3; TSSK4; TTBK1; TTBK2; TTK; TWF2; TXK; TYK2; TYRO3; UHMK1; ULK1; ULK2; ULK3; ULK4; VEGFR; VRK1; VRK2; VRK3; WEE1; WEE2; WNK1; WNK2; WNK3; WNK4; YES1; ZAK; ZAP70;
References
- ^ Knighton DR, Bell SM, Zheng J, et al. (May 1993). "2.0 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with a peptide inhibitor and detergent". Acta Crystallogr. D. 49 (Pt 3): 357–61. doi:10.1107/S0907444993000502. PMID 15299526.
- ^ a b Hanks SK, Quinn AM (1991). "Protein kinase catalytic domain sequence database: Identification of conserved features of primary structure and classification of family members". Meth. Enzymol. Methods in Enzymology. 200: 38–62. doi:10.1016/0076-6879(91)00126-H. ISBN 978-0-12-182101-2. PMID 1956325.
- ^ a b Hanks SK, Hunter T (May 1995). "Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification". FASEB J. 9 (8): 576–96. PMID 7768349.
- ^ Scheeff ED, Bourne PE (October 2005). "Structural evolution of the protein kinase-like superfamily". PLoS Comput. Biol. 1 (5): e49. doi:10.1371/journal.pcbi.0010049. PMC 1261164. PMID 16244704.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ G. Manning, D. B. Whyte, R. Martinez, T. Hunter, S. Sudarsanam, The Protein Kinase Complement of the Human Genome, Science 6 December 2002, 298:1912-1934 doi:10.1126/science.1075762
- ^ Hunter T, Hanks SK, Quinn AM (1988). "The protein kinase family: conserved features and deduced phylogeny of the catalytic domains". Science. 241 (4861): 42–51. doi:10.1126/science.3291115. PMID 3291115.
- ^ Manning G, Plowman GD, Hunter T, Sudarsanam S (October 2002). "Evolution of protein kinase signaling from yeast to man". Trends Biochem. Sci. 27 (10): 514–20. doi:10.1016/S0968-0004(02)02179-5. PMID 12368087.
- ^ Stout TJ, Foster PG, Matthews DJ (2004). "High-throughput structural biology in drug discovery: protein kinases". Curr. Pharm. Des. 10 (10): 1069–82. doi:10.2174/1381612043452695. PMID 15078142.
- ^ Li B, Liu Y, Uno T, Gray N (August 2004). "Creating chemical diversity to target protein kinases". Comb. Chem. High Throughput Screen. 7 (5): 453–72. doi:10.2174/1386207043328580. PMID 15320712.
- ^ Hanks SK (2003). "Genomic analysis of the eukaryotic protein kinase superfamily: a perspective". Genome Biol. 4 (5): 111. doi:10.1186/gb-2003-4-5-111. PMC 156577. PMID 12734000.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) [dead link ] - ^ Hunter T (1991). "Protein kinase classification". Meth. Enzymol. Methods in Enzymology. 200: 3–37. doi:10.1016/0076-6879(91)00125-G. ISBN 978-0-12-182101-2. PMID 1835513.
- ^ Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (July 1991). "Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase". Science. 253 (5018): 407–14. doi:10.1126/science.1862342. PMID 1862342.
- ^ Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (December 2002). "The protein kinase complement of the human genome". Science. 298 (5600): 1912–34. doi:10.1126/science.1075762. PMID 12471243.
External links
- Eukaryotic Linear Motif resource motif class LIG_AGCK_PIF_1
- Eukaryotic Linear Motif resource motif class LIG_AGCK_PIF_2
- Eukaryotic Linear Motif resource motif class LIG_AGCK_PIF_3
- Eukaryotic Linear Motif resource motif class LIG_MAPK_1
- Eukaryotic Linear Motif resource motif class LIG_MAPK_2
- Eukaryotic Linear Motif resource motif class MOD_CDK_1
- Eukaryotic Linear Motif resource motif class MOD_CK1_1
- Eukaryotic Linear Motif resource motif class MOD_CK2_1
- Eukaryotic Linear Motif resource motif class MOD_GSK3_1
- Eukaryotic Linear Motif resource motif class MOD_LATS_1
- Eukaryotic Linear Motif resource motif class MOD_PK_1
- Eukaryotic Linear Motif resource motif class MOD_PKA_1
- Eukaryotic Linear Motif resource motif class MOD_PKA_2
- Eukaryotic Linear Motif resource motif class MOD_PKB_1
- Eukaryotic Linear Motif resource motif class MOD_ProDKin_1
- Eukaryotic Linear Motif resource motif class MOD_TYR_DYR