Jump to content

ILF3: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Interactions: consistent citation formatting
Line 16: Line 16:
* [[XPO5]].<ref name = pmid11777942>{{cite journal | vauthors = Brownawell AM, Macara IG | title = Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins | journal = The Journal of Cell Biology | volume = 156 | issue = 1 | pages = 53–64 | date = Jan 2002 | pmid = 11777942 | pmc = 2173575 | doi = 10.1083/jcb.200110082 }}</ref>
* [[XPO5]].<ref name = pmid11777942>{{cite journal | vauthors = Brownawell AM, Macara IG | title = Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins | journal = The Journal of Cell Biology | volume = 156 | issue = 1 | pages = 53–64 | date = Jan 2002 | pmid = 11777942 | pmc = 2173575 | doi = 10.1083/jcb.200110082 }}</ref>
{{Div col end}}
{{Div col end}}
Small NF90/ILF3-associated RNAs (snaR) (~120 nucleotides long) and are known to interact with ILF3 double-stranded RNA-binding motifs.<ref>{{cite journal|last1=Parrott|first1=AM|last2=Mathews|first2=MB|title=Novel rapidly evolving hominid RNAs bind nuclear factor 90 and display tissue-restricted distribution.|journal=Nucleic Acids Res.|date=2007|volume=35(18)|pages=6249-58|doi=10.1093/nar/gkm668|pmid=17855395|url=http://nar.oxfordjournals.org/content/35/18/6249.long}}</ref> snaR-A is abundant in human testis and has been shown to associate with ribosomes in HeLa cells. snaR-A is present in human and gorilla but not in chimpanzee. Other snaR RNAs are found in African Great Apes (including chimpanzee and bonobo).<ref>{{cite journal|last1=Parrott|first1=AM|last2=Tsai|first2=M|last3=Batchu|first3=P|last4=Ryan|first4=K|last5=Ozer|first5=HL|last6=Tian|first6=B|last7=Mathews|first7=MB|title=The evolution and expression of the snaR family of small non-coding RNAs.|journal=Nucleic Acids Res.|date=2011|volume=39(4)|page=1485-500|doi=10.1093/nar/gkq856|pmid=20935053|url=http://nar.oxfordjournals.org/content/39/4/1485.long}}</ref>
Small NF90/ILF3-associated RNAs (snaR) (~120 nucleotides long) and are known to interact with ILF3 double-stranded RNA-binding motifs.<ref>{{cite journal | vauthors = Parrott AM, Mathews MB | title = Novel rapidly evolving hominid RNAs bind nuclear factor 90 and display tissue-restricted distribution | journal = Nucleic Acids Research | volume = 35 | issue = 18 | pages = 6249–58 | date = 2007 | pmid = 17855395 | doi = 10.1093/nar/gkm668 }}</ref> snaR-A is abundant in human testis and has been shown to associate with ribosomes in HeLa cells. snaR-A is present in human and gorilla but not in chimpanzee. Other snaR RNAs are found in African Great Apes (including chimpanzee and bonobo).<ref>{{cite journal | vauthors = Parrott AM, Tsai M, Batchu P, Ryan K, Ozer HL, Tian B, Mathews MB | title = The evolution and expression of the snaR family of small non-coding RNAs | journal = Nucleic Acids Research | volume = 39 | issue = 4 | pages = 1485–500 | page = 1485-500 | date = Mar 2011 | pmid = 20935053 | doi = 10.1093/nar/gkq856 }}</ref>


== References ==
== References ==

Revision as of 12:53, 24 February 2016

Template:PBB Interleukin enhancer-binding factor 3 is a protein that in humans is encoded by the ILF3 gene.[1][2]

Function

Nuclear factor of activated T-cells (NFAT) is a transcription factor required for T-cell expression of interleukin 2. NFAT binds to a sequence in the IL2 enhancer known as the antigen receptor response element 2. In addition, NFAT can bind RNA and is an essential component for encapsidation and protein priming of hepatitis B viral polymerase. NFAT is a heterodimer of 45 kDa and 90 kDa proteins, the larger of which is the product of this gene. The encoded protein, which is primarily localized to ribosomes, probably regulates transcription at the level of mRNA elongation. At least three transcript variants encoding three different isoforms have been found for this gene.[3]

Interactions

ILF3 has been shown to interact with:

Small NF90/ILF3-associated RNAs (snaR) (~120 nucleotides long) and are known to interact with ILF3 double-stranded RNA-binding motifs.[12] snaR-A is abundant in human testis and has been shown to associate with ribosomes in HeLa cells. snaR-A is present in human and gorilla but not in chimpanzee. Other snaR RNAs are found in African Great Apes (including chimpanzee and bonobo).[13]

References

  1. ^ Kao PN, Chen L, Brock G, Ng J, Kenny J, Smith AJ, Corthésy B (Aug 1994). "Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90". The Journal of Biological Chemistry. 269 (32): 20691–9. PMID 7519613.
  2. ^ Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM (Sep 1996). "Identification of novel M phase phosphoproteins by expression cloning". Molecular Biology of the Cell. 7 (9): 1455–69. doi:10.1091/mbc.7.9.1455. PMC 275994. PMID 8885239.
  3. ^ "Entrez Gene: ILF3 interleukin enhancer binding factor 3, 90kDa".
  4. ^ Ting NS, Kao PN, Chan DW, Lintott LG, Lees-Miller SP (Jan 1998). "DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45". The Journal of Biological Chemistry. 273 (4): 2136–45. PMID 9442054.
  5. ^ a b Saunders LR, Perkins DJ, Balachandran S, Michaels R, Ford R, Mayeda A, Barber GN (Aug 2001). "Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR". The Journal of Biological Chemistry. 276 (34): 32300–12. doi:10.1074/jbc.M104207200. PMID 11438536.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Tang J, Kao PN, Herschman HR (Jun 2000). "Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3". The Journal of Biological Chemistry. 275 (26): 19866–76. doi:10.1074/jbc.M000023200. PMID 10749851.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Lee J, Bedford MT (Mar 2002). "PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays". EMBO Reports. 3 (3): 268–73. doi:10.1093/embo-reports/kvf052. PMC 1084016. PMID 11850402.
  8. ^ Langland JO, Kao PN, Jacobs BL (May 1999). "Nuclear factor-90 of activated T-cells: A double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR". Biochemistry. 38 (19): 6361–8. doi:10.1021/bi982410u. PMID 10320367.
  9. ^ Parker LM, Fierro-Monti I, Mathews MB (Aug 2001). "Nuclear factor 90 is a substrate and regulator of the eukaryotic initiation factor 2 kinase double-stranded RNA-activated protein kinase". The Journal of Biological Chemistry. 276 (35): 32522–30. doi:10.1074/jbc.M104408200. PMID 11438540.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ Patel RC, Vestal DJ, Xu Z, Bandyopadhyay S, Guo W, Erme SM, Williams BR, Sen GC (Jul 1999). "DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR". The Journal of Biological Chemistry. 274 (29): 20432–7. PMID 10400669.
  11. ^ Brownawell AM, Macara IG (Jan 2002). "Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins". The Journal of Cell Biology. 156 (1): 53–64. doi:10.1083/jcb.200110082. PMC 2173575. PMID 11777942.
  12. ^ Parrott AM, Mathews MB (2007). "Novel rapidly evolving hominid RNAs bind nuclear factor 90 and display tissue-restricted distribution". Nucleic Acids Research. 35 (18): 6249–58. doi:10.1093/nar/gkm668. PMID 17855395.
  13. ^ Parrott AM, Tsai M, Batchu P, Ryan K, Ozer HL, Tian B, Mathews MB (Mar 2011). "The evolution and expression of the snaR family of small non-coding RNAs". Nucleic Acids Research. 39 (4): 1485-500. doi:10.1093/nar/gkq856. PMID 20935053. {{cite journal}}: More than one of |pages= and |page= specified (help)

Further reading

  • St Johnston D, Brown NH, Gall JG, Jantsch M (Nov 1992). "A conserved double-stranded RNA-binding domain". Proceedings of the National Academy of Sciences of the United States of America. 89 (22): 10979–83. doi:10.1073/pnas.89.22.10979. PMC 50466. PMID 1438302.
  • Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (Apr 1996). "A "double adaptor" method for improved shotgun library construction". Analytical Biochemistry. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
  • Bonaldo MF, Lennon G, Soares MB (Sep 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
  • Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (Apr 1997). "Large-scale concatenation cDNA sequencing". Genome Research. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
  • Ting NS, Kao PN, Chan DW, Lintott LG, Lees-Miller SP (Jan 1998). "DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45". The Journal of Biological Chemistry. 273 (4): 2136–45. doi:10.1074/jbc.273.4.2136. PMID 9442054.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Marcoulatos P, Avgerinos E, Tsantzalos DV, Vamvakopoulos NC (May 1998). "Mapping interleukin enhancer binding factor 3 gene (ILF3) to human chromosome 19 (19q11-qter and 19p11-p13.1) by polymerase chain reaction amplification of human-rodent somatic cell hybrid DNA templates". Journal of Interferon & Cytokine Research. 18 (5): 351–5. doi:10.1089/jir.1998.18.351. PMID 9620363.
  • Aoki Y, Zhao G, Qiu D, Shi L, Kao PN (Dec 1998). "CsA-sensitive purine-box transcriptional regulator in bronchial epithelial cells contains NF45, NF90, and Ku". The American Journal of Physiology. 275 (6 Pt 1): L1164-72. PMID 9843854.
  • Langland JO, Kao PN, Jacobs BL (May 1999). "Nuclear factor-90 of activated T-cells: A double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR". Biochemistry. 38 (19): 6361–8. doi:10.1021/bi982410u. PMID 10320367.
  • Patel RC, Vestal DJ, Xu Z, Bandyopadhyay S, Guo W, Erme SM, Williams BR, Sen GC (Jul 1999). "DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR". The Journal of Biological Chemistry. 274 (29): 20432–7. doi:10.1074/jbc.274.29.20432. PMID 10400669.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Satoh M, Shaheen VM, Kao PN, Okano T, Shaw M, Yoshida H, Richards HB, Reeves WH (Dec 1999). "Autoantibodies define a family of proteins with conserved double-stranded RNA-binding domains as well as DNA binding activity". The Journal of Biological Chemistry. 274 (49): 34598–604. doi:10.1074/jbc.274.49.34598. PMID 10574923.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Xu YH, Grabowski GA (Dec 1999). "Molecular cloning and characterization of a translational inhibitory protein that binds to coding sequences of human acid beta-glucosidase and other mRNAs". Molecular Genetics and Metabolism. 68 (4): 441–54. doi:10.1006/mgme.1999.2934. PMID 10607473.
  • Coolidge CJ, Patton JG (Mar 2000). "A new double-stranded RNA-binding protein that interacts with PKR". Nucleic Acids Research. 28 (6): 1407–17. doi:10.1093/nar/28.6.1407. PMC 111047. PMID 10684936.
  • Tang J, Kao PN, Herschman HR (Jun 2000). "Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3". The Journal of Biological Chemistry. 275 (26): 19866–76. doi:10.1074/jbc.M000023200. PMID 10749851.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Saunders LR, Jurecic V, Barber GN (Jan 2001). "The 90- and 110-kDa human NFAR proteins are translated from two differentially spliced mRNAs encoded on chromosome 19p13". Genomics. 71 (2): 256–9. doi:10.1006/geno.2000.6423. PMID 11161820.
  • Duchange N, Pidoux J, Camus E, Sauvaget D (Dec 2000). "Alternative splicing in the human interleukin enhancer binding factor 3 (ILF3) gene". Gene. 261 (2): 345–53. doi:10.1016/S0378-1119(00)00495-9. PMID 11167023.
  • Saunders LR, Perkins DJ, Balachandran S, Michaels R, Ford R, Mayeda A, Barber GN (Aug 2001). "Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR". The Journal of Biological Chemistry. 276 (34): 32300–12. doi:10.1074/jbc.M104207200. PMID 11438536.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Parker LM, Fierro-Monti I, Mathews MB (Aug 2001). "Nuclear factor 90 is a substrate and regulator of the eukaryotic initiation factor 2 kinase double-stranded RNA-activated protein kinase". The Journal of Biological Chemistry. 276 (35): 32522–30. doi:10.1074/jbc.M104408200. PMID 11438540.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Reichman TW, Muñiz LC, Mathews MB (Jan 2002). "The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells". Molecular and Cellular Biology. 22 (1): 343–56. doi:10.1128/MCB.22.1.343-356.2002. PMC 134226. PMID 11739746.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.