Jump to content

GLI1: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Staylor71 (talk | contribs)
m →‎Gli Family: corrected subject-verb agreement
Staylor71 (talk | contribs)
m →‎Gli Family: minor grammar fixes
Line 79: Line 79:
|pages=1593–605.
|pages=1593–605.
|pmid=10725236
|pmid=10725236
}}</ref> The conserved stretch of 9 amino acids connecting the C-terminal histidine of one finger to the N-terminal cysteine of the next. The GLI consensus finger amino acid sequence is [Y/F]JXCX3GCX3[F/Y]X5LX2HX4H[T/S]GEKP<ref name="ruppert"/> The Gli1 and Gli2 protein zinc finger [[DNA]] binding domain have been shown to bind to the DNA consensus GLI binding site GACCACCCA
}}</ref> The conserved stretch of 9 amino acids connects the C-terminal histidine of one finger to the N-terminal cysteine of the next. The GLI consensus finger amino acid sequence is [Y/F]JXCX3GCX3[F/Y]X5LX2HX4H[T/S]GEKP.<ref name="ruppert"/> The Gli1 and Gli2 protein zinc finger [[DNA]] binding domain have been shown to bind to the DNA consensus GLI binding site GACCACCCA.
<ref>{{cite journal
<ref>{{cite journal
|author=Kinzler KW
|author=Kinzler KW
Line 93: Line 93:
}}</ref>
}}</ref>
Gli Proteins transcriptional regulation is tissue specific for many targets. For example Gli1 in primary keratinocytes upregulates FOXM1<ref name="teh">{{cite journal
Gli Proteins transcriptional regulation is tissue specific for many targets. For example, Gli1 in primary keratinocytes upregulates FOXM1<ref name="teh">{{cite journal
|journal=Cancer Res.
|journal=Cancer Res.
|date=August 2002
|date=August 2002
Line 116: Line 116:
|pmc=55407}}</ref>
|pmc=55407}}</ref>


Human GLi1 encodes a transcription activator involved in development that is a known [[oncogene]].<ref name="yoon"/><ref>{{cite journal
Human Gli1 encodes a transcription activator involved in development that is a known [[oncogene]].<ref name="yoon"/><ref>{{cite journal
|author=Kinzler KW et al.
|author=Kinzler KW et al.
|title=Identification of an amplified, highly expressed gene in a human glioma.
|title=Identification of an amplified, highly expressed gene in a human glioma.

Revision as of 15:43, 25 March 2014

Template:PBB Gli1 is a protein originally isolated in human glioblastoma.[1]

Overview

The Gli proteins are the effectors of Hedgehog (Hh) signaling and have been shown to be involved in cell fate determination, proliferation and patterning in many cell types and most organs during embryo development.[2] The Gli transcription factors activate/inhibit transcription by binding to Gli responsive genes and by interacting with the transcription complex. The Gli transcription factors have DNA binding zinc finger domains which bind to consensus sequences on their target genes to initiate or suppress transcription.[3] Yoon[4] showed that mutating the Gli zinc finger domain inhibited the proteins effect proving its role as a transcription factor. Gli proteins have an 18-amino acid region highly similar to the α-helical herpes simplex viral protein 16 activation domain. This domain contains a consensus recognition element for the human TFIID TATA box-binding protein associated factor TAFII31.[4] Other proteins such as Missing in Metastasis (MIM/BEG4) have been shown to potentiate the effects of the Gli transcription factors on target gene transcription. Gli and MIM have been shown to act synergistically to induce epidermal growth and MIM + Gli1 overexpressing grafts show similar growth patterns to Shh grafts.[5]

Gli Family

There are three members of the family; Gli1, Gli2 and Gli3 which are all transcription factors mediating the Hh pathway. The GLI1, GLI2, and GLI3 genes encode transcription factors which all contain conserved tandem C2-H2 zinc finger domains and a consensus histidine/cysteine linker sequence between zinc fingers. This Gli motif is related to those of Kruppel which is a Drosophila segmentation gene of the gap class.[6] In transgenic mice, mutant Gli1 lacking the zinc fingers does not induce Sonic Hedgehog (Shh) targets.[7] The conserved stretch of 9 amino acids connects the C-terminal histidine of one finger to the N-terminal cysteine of the next. The GLI consensus finger amino acid sequence is [Y/F]JXCX3GCX3[F/Y]X5LX2HX4H[T/S]GEKP.[6] The Gli1 and Gli2 protein zinc finger DNA binding domain have been shown to bind to the DNA consensus GLI binding site GACCACCCA. [8]

Gli Proteins transcriptional regulation is tissue specific for many targets. For example, Gli1 in primary keratinocytes upregulates FOXM1[9] whereas in mesenchymal C3H10T1/2 cells it has been shown to upregulate platelet-derived growth factor receptor PDGFRa.[10]

Human Gli1 encodes a transcription activator involved in development that is a known oncogene.[4][11] It has been found that N-terminal regions of Gli1 recruit histone deacetylase complexes via SuFu, which are involved in DNA folding in chromosomes.[12] This may negatively regulate transcription indicating Gli1 could act as transcriptional inhibitor as well as an activator.[13] The human GLI1 promoter region is regulated by a 1.4 kb 5’ region including a 5’ flanking sequence, an untranslated exon and 425bp of the first intron. Numerous proteins such as Sp1, USF1, USF2, and Twist are also involved in Gli1 promoter regulation.[14][15][16] During mouse embryo development Gli1 expression can be detected in the gut mesoderm, ventral neural tube, ependymal layer of the spinal cord, forebrain, midbrain, cerebellum, and in sites of endochondral bone formation (Hui et al., 1994; Walterhouse et al., 1993) Wallace, 1999). Some of the downstream gene targets of human Gli1 include regulators of the cell cycle and apoptosis such as cyclin D2 and plakoglobin respectively (Yoon et al., 2002a). Gli1 also upregulates FoxM1 in BCC.[9] Gli1 expression can also mimic Shh expression in certain cell types (Dahmane et al., 1997b)

Isolation

GLI1 was originally isolated from a glioma tumour and has been found to be up regulated in many tumors including muscle, brain and skin tumors such as Basal cell carcinoma (BCC) (Altaba et al.). Shh and the Gli genes are normally expressed in hair follicles and skin tumours expressing Gli1 may arise from hair follicles. The level of Gli1 expression correlates with the tumor grade in bone and soft tissue sarcomas.[17] Transgenic mice and frogs overexpressing Gli1 develop BCC like tumours as well as other hair follicle-derived neoplasias, such as trichoepitheliomas, cylindromas, and trichoblastomas (Dahmane et al., 1997; Nilsson et al., 2000). Expression of Gli1 in the embryonic frog epidermis results in the development of tumours that express endogenous Gli1. This suggests that overexpressed Gli1 alone is probably sufficient for tumour development (Nilsson et al., 2000). Mutations leading to the expression of Gli1 in basal cells are thus predicted to induce BCC formation (Dahmane et al., 1997a)

Interactions

GLI1 has been shown to interact with ZIC1,[18] STK36,[19] SUFU[20][21][22] and SAP18.[23]

References

  1. ^ Kinzler KW, (April 1987). "Identification of an amplified, highly expressed gene in a human glioma". Science. 236 (4797): 70–3. doi:10.1126/science.3563490. PMID 3563490. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  2. ^ Ruiz i Altaba A. (June 1999). "Gli proteins encode context-dependent positive and negative functions: implications for development and disease". Development. 126 (14): 3205–16. PMID 10375510.
  3. ^ Sasaki H, (April 1997). "A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro". Development. 124 (7): 1313–22. PMID 9118802. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  4. ^ a b c Liu CZ (March 1998). "Characterization of the promoter region and genomic organization of GLI, a member of the Sonic hedgehog-Patched signaling pathway". Gene. 209 (1–2): 1–11. doi:10.1016/S0378-1119(97)00668-9. PMID 9524201. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  5. ^ Callahan CA; et al. (November 2004). "MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription". Genes Dev. 18 (22): 2724–9. doi:10.1101/gad.1221804. PMC 528890. PMID 15545630. {{cite journal}}: Explicit use of et al. in: |author= (help)
  6. ^ a b Ruppert JM; et al. (August 1988). "The GLI-Kruppel family of human genes". Mol Cell Biol. 8 (8): 3104–13. PMC 363537. PMID 2850480. {{cite journal}}: Explicit use of et al. in: |author= (help)
  7. ^ Park HL; et al. (April 2000). "Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation". Development. 127 (8): 1593–605. PMID 10725236. {{cite journal}}: Explicit use of et al. in: |author= (help)
  8. ^ Kinzler KW (February 1990). "The GLI gene encodes a nuclear protein which binds specific sequences in the human genome". Mol Cell Biol. 10 (2): 634–42. PMC 360861. PMID 2105456. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ a b Teh MT (August 2002). "FOXM1 is a downstream target of Gli1 in basal cell carcinomas". Cancer Res. 62 (16): 4773–80. PMID 12183437. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  10. ^ Xie J; et al. (July 2001). "A role of PDGFRalpha in basal cell carcinoma proliferation". Proc Natl Acad Sci U S A. 9 (16): 9255–9. doi:10.1073/pnas.151173398. PMC 55407. PMID 11481486. {{cite journal}}: Explicit use of et al. in: |author= (help)
  11. ^ Kinzler KW; et al. (April 1987). "Identification of an amplified, highly expressed gene in a human glioma". Science. 236 (4797): 70–3. doi:10.1126/science.3563490. PMID 3563490. {{cite journal}}: Explicit use of et al. in: |author= (help)
  12. ^ Cheng SY (April 2002). "Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex". Proc Natl Acad Sci U S A. 99 (8): 5442–7. doi:10.1073/pnas.082096999. PMC 122788. PMID 11960000. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  13. ^ Jacob J (August 2003). "Gli proteins and the control of spinal-cord patterning". EMBO Rep. 4 (8): 761–5. doi:10.1038/sj.embor.embor896. PMC 1326336. PMID 12897799. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  14. ^ Villavicencio EH (April 2002). "Cooperative E-box regulation of human GLI1 by TWIST and USF". Genesis. 32 (4): 247–58. doi:10.1002/gene.10078. PMID 11948912. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  15. ^ Gitelman I. (September 1997). "Twist protein in mouse embryogenesis". Dev Biol. 189 (2): 205–14. doi:10.1006/dbio.1997.8614. PMID 9299114.
  16. ^ Hebrok M (May 1997). "Repression of muscle-specific gene activation by the murine Twist protein". Exp Cell Res. 232 (2): 295–303. doi:10.1006/excr.1997.3541. PMID 9168805. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  17. ^ Dahmane N (October 1997). "Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours". Nature. 389 (6653): 876–81. doi:10.1038/39918. PMID 9349822. Erratum in: Nature 1997 December 4;390(6659):536. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  18. ^ Koyabu, Y (March 2001). "Physical and functional interactions between Zic and Gli proteins". J. Biol. Chem. 276 (10). United States: 6889–92. doi:10.1074/jbc.C000773200. ISSN 0021-9258. PMID 11238441. {{cite journal}}: Cite has empty unknown parameters: |laydate=, |laysummary=, and |laysource= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: unflagged free DOI (link)
  19. ^ Murone, M (May 2000). "Gli regulation by the opposing activities of fused and suppressor of fused". Nat. Cell Biol. 2 (5). ENGLAND: 310–2. doi:10.1038/35010610. ISSN 1465-7392. PMID 10806483. {{cite journal}}: Cite has empty unknown parameters: |laydate=, |laysummary=, and |laysource= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  20. ^ Stone, D M (December 1999). "Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli". J. Cell. Sci. 112 (23). ENGLAND: 4437–48. ISSN 0021-9533. PMID 10564661. {{cite journal}}: Cite has empty unknown parameters: |laydate=, |laysummary=, and |laysource= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  21. ^ Kogerman, P (September 1999). "Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1". Nat. Cell Biol. 1 (5). ENGLAND: 312–9. doi:10.1038/13031. ISSN 1465-7392. PMID 10559945. {{cite journal}}: Cite has empty unknown parameters: |laydate=, |laysummary=, and |laysource= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  22. ^ Dunaeva, Marina (February 2003). "Characterization of the physical interaction of Gli proteins with SUFU proteins". J. Biol. Chem. 278 (7). United States: 5116–22. doi:10.1074/jbc.M209492200. ISSN 0021-9258. PMID 12426310. {{cite journal}}: Cite has empty unknown parameters: |laydate=, |laysummary=, and |laysource= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: unflagged free DOI (link)
  23. ^ Cheng, Steven Yan (April 2002). "Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex". Proc. Natl. Acad. Sci. U.S.A. 99 (8). United States: 5442–7. doi:10.1073/pnas.082096999. ISSN 0027-8424. PMC 122788. PMID 11960000. {{cite journal}}: Cite has empty unknown parameters: |laydate=, |laysummary=, and |laysource= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)

Template:PBB Controls